Wednesday, May 21, 2008

Machining English www.tool-tool.com


Bewise Inc. www.tool-tool.com Reference source from the internet.

A modern CNC machine can perform most machining operations with high precision.

A modern CNC machine can perform most machining operations with high precision.

Conventional machining, one of the most important material removal methods, is a collection of material-working processes in which power-driven machine tools, such as lathes, milling machines, and drill presses are used with a sharp cutting tool to mechanically cut the material to achieve the desired geometry. Machining is a part of the manufacture of almost all metal products. It is not uncommon for other materials to be machined. A person who specializes in machining is called a machinist. Machining is also a hobby. A room, building, or company where machining is done is called a machine shop.

[edit] Machining operations

The three principal machining processes are classified as turning, drilling and milling. Other operations falling into miscellaneous categories include shaping, planing, broaching and sawing. Turning operations are operations that rotate the workpiece as the primary method of moving metal against the cutting tool. Lathes are the principal machine tool used in turning. Milling operations are operations in which the cutting tool rotates to bring cutting edges to bear against the workpiece. Milling machines are the principal machine tool used in milling. Drilling operations are operations in which holes are produced or refined by bringing a rotating cutter with cutting edges at the lower extremity into contact with the workpiece. Drilling operations are done primarily in drill presses but not uncommon on the lathes or mills. Miscellaneous operations are operations that strictly speaking may not be machining operations in that they may not be chip producing operations but these operations are performed at a typical machine tool. Burnishing is an example of a miscellaneous operation. Burnishing produces no chips but can be performed at a lathe, mill, or drill press.

An unfinished workpiece requiring machining will need to have some material cut away to create a finished product. A finished product would be a workpiece that meets the specifications set out for that workpiece by engineering drawings or blueprints. For example, a workpiece may be required to have a specific outside diameter. A lathe is a machine tool that can be used to create that diameter by rotating a metal workpiece, so that a cutting tool can cut metal away, creating a smooth, round surface matching the required diameter and surface finish. A drill can be used to remove metal in the shape of a cylindrical hole. Other tools that may be used for various types of metal removal are milling machines, saws, and grinding tools. Many of these same techniques are used in woodworking.

More recent, advanced machining techniques include electrical discharge machining (EDM), electro-chemical erosion, laser, or water jet cutting to shape metal workpieces.

As a commercial venture, machining is generally performed in a machine shop, which consists of one or more workrooms containing major machine tools. Although a machine shop can be a stand alone operation, many businesses maintain internal machine shops which support specialized needs of the business.

Machining requires attention to many details for a workpiece to meet the specifications set out in the engineering drawings or blueprints. Beside the obvious problems related to correct dimensions, there is the problem of achieving the correct finish or surface smoothness on the workpiece. The inferior finish found on the machined surface of a workpiece may be caused by incorrect clamping, dull tool, or inappropriate presentation of a tool. Frequently, this poor surface finish, known as chatter, is evident by an undulating or irregular finish, and the appearance of waves on the machined surfaces of the workpiece.

Basic machining process.

Basic machining process.

[edit] Overview of machining technology

Machining is not just one process; it is a group of processes. The common feature is the use of a cutting tool to form a chip that is removed from the workpart. To perform the operation, relative motion is required between the tool and work. This relative motion is achieved in most machining operation by means of a primary motion, called cutting speed and a secondary motion called feed. The shape of the tool and its penetration into the work surface, combined with these motions, produce the desired shape of the resulting work surface.

[edit] Types of machining operation

There are many kinds of machining operations, each of which is capable of generating a certain part geometry and surface texture.

In turning, a cutting tool with a single cutting edge is used to remove material from a rotating workpiece to generate a cylindrical shape. The speed motion in turning is provided by the rotating workpart, and the feed motion is achieved by the cutting tool moving slowly in a direction parallel to the axis of rotation of the workpiece.

Drilling is used to create a round hole. It is accomplished by a rotating tool that is typically has two cutting edges. The tool is fed in a direction parallel to its axis of rotation into the workpart to form the round hole.

In boring, the tool is used to enlarge an already available hole. It is a fine finishing operation used in the final stages of product manufacture.

In milling, a rotating tool with multiple cutting edges is moved slowly relative to the material to generate a plane or straight surface. The direction of the feed motion is perpendicular to the tool's axis of rotation. The speed motion is provided by the rotating milling cutter. The two basic forms of milling are —

Peripheral milling
Face milling

Other conventional machining operations include shaping, planing, broaching and sawing. Also, grinding and similar abrasive operations are often included within the category of machining.

[edit] The cutting tool

A cutting tool has one or more sharp cutting edgesand is made of a material that harder than the work material. The cutting edge serves to separate chip from the parent work material. Connected to the cutting edge are the two surfaces of the tool —

The rake face; and
The flank.

The rake face which directs the flow of newly formed chip, is oriented at a certain angle is called the rake angle "α". It is measured relative to the plane perpendicular to the work surface. The rake angle can be positive or negative. The flank of the tool provides a clearance between the tool and the newly formed work surface, thus protecting the surface from abrasion, which would degrade the finish. This angle between the work surface and the flank surface is called the relief angle. There are two basic types of cutting tools —

  1. Single point tool; and
  2. Multiple-cutting-edge tool.

A single point tool has one cutting edge and is used for turning. During mechining, the point of the penetrates below the original work surface of the workpart. The point is usily rounded to a certain radius, called the nose radius.

Multiple-cutting-edge tools have more than one cutting edge and usually achieve their motion relative to the workpartby rotating. Drilling and milling uses rotating multiple-cutting-edge tools. Although the shapes of these tools are different from a single-point tool, many elements of tool geometry are similar.

[edit] Cutting conditions

Relative motion is required between the tool and work to perform a machining operation. The primary motion is accomplished at a certain cutting speed. In addition, the tool must be moved laterally across the work. This is a much slower motion, called the feed. The remaining dimension of the cut is the penetration of the cutting tool below the original work surface, called the depth of cut. Collectively, speed, feed, and depth of cut are called the cutting conditions. They form the three dimensions of the machining process, and for certain operations, their product can be used to obtain the material removal rate for the process —

{R}_{MR} = vfd\,\!

where —

  • {R}_{MR}\,\! — the material removal rate in mm3/s, (in3/s),
  • v\,\! — the cutting speed in m/s, (ft/min),
  • f\,\! — the feed in mm, (in),
  • d\,\! — the depth of cut in mm, (in).


Note:— All units MUST be converted to the corresponding decimal (or USCU) units.

Machining operations usually divide into two categories, distinguished by purpose and cutting conditions:

Roughing cuts, and
Finishing cuts.

Roughing cuts are used to remove large amount of material from the starting workpart as rapidly as possible, in order to produce a shape close to the desired form, but leaving some material on the piece for a subsequent finishing operation. Finishing cuts are used to complete the part and achieve the final dimension, tolerances, and surface finish. In production machining jobs, one or more roughing cuts are usually performed on the work, followed by one or two finishing cuts. Roughing operations are done at high feeds and depths — feeds of .04-1.25 mm/rev (0.015-0.050 in/rev) and depths of 2.5-20 mm (0.100-0.750 in) are typical. Finishing operations are carried out at low feeds and depths - feeds of 0.0125-0.04 mm/rev (0.0005-0.0015 in/rev) and depths of 0.75-2.0 mm (0.030-0.075 in) are typical. Cutting speeds are lower in roughing than in finishing.

A cutting fluid is often applied to the machining operation to cool and lubricate the cutting tool. Determining whether a cutting fluid should be used, and, if so, choosing the proper cutting fluid, is usually included within the scope of cutting condition.

[edit] Stages in metal cutting

Roughing cuts are used to remove large amount of material from the starting workpart as rapidly as possible, in order to produce a shape close to the desired form, but leaving some material on the piece for a subsequent finishing operation. Finishing cuts are used to complete the part and achieve the final dimension, tolerances, and surface finish. In production machining jobs, one or more roughing cuts are usually performed on the work, followed by one or two finishing cuts. Roughing operations are done at high feeds and depths — feeds of .04-1.25 mm/rev (0.015-0.050 in/rev) and depths of 2.5-20 mm (0.100-0.750 in) are typical. Finishing operations are carried out at low feeds and depths - feeds of 0.125-0.4 mm/rev (0.005-0.015 in/rev) and depths of 0.75-2.0 mm (0.030-0.075 in) are typical. Cutting speeds are lower in roughing than in finishing.

A cutting fluid is often applied to the machining operation to cool and lubricate the cutting tool. Determining whether a cutting fluid should be used, and, if so, choosing the proper cutting fluid, is usually included within the scope of cutting condition.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

No comments: