Bewise Inc. www.tool-tool.com Reference source from the internet.
High-speed rail is a type of passenger rail transport that operates significantly faster than the normal speed of rail traffic. Specific definitions include 200 km/h (124 mph) and faster — depending on whether the track is upgraded or new — by the European Union, and above 90 mph (145 km/h) by the United States Federal Railroad Administration, but there is no single standard, and lower speeds can be required by local constraints.[1][2]
While high-speed rail is designed for passenger travel, some high speed systems offer also some kind of freight service. For instance, the French mail service La Poste owns a few special TGV trains for carrying postal freight.
[edit] History
Railways were the first form of mass transportation, and until the development of the motorcar in the early 20th century had an effective monopoly on land transport. Railway companies in Europe and the United States used streamlined trains since 1933 for high speed services with an average speed of up to 130 km/h and top speed of more than 160 km/h. With this service they were able to compete with the upcoming airplanes. World War II stopped these services. In 1957, the Odakyu Electric Railway in Greater Tokyo launched its Romancecar 3000 SSE. This set a world record for narrow gauge trains at 145 km/h, giving Japanese designers confidence they could safely build even faster trains at standard gauge. Desperate for transport solutions due to overloaded trains between Tokyo and Osaka, Japan, the idea of high speed rail was born.
The world's first "high-speed train" was Japan's Tōkaidō Shinkansen, officially opened in October 1964, with construction commencing in 1959.[2] The 0 Series Shinkansen, built by Kawasaki Heavy Industries, achieved speeds of 200 km/h (125 mph) on the Tokyo–Nagoya–Kyoto–Osaka route.
[edit] Definition of High-Speed Rail
There is no globally accepted standard separating high-speed rail from conventional railroads; however a number of widely accepted variables have been acknowledged by the industry in recent years. Generally high-speed is defined as greater than 200 km/h- applying to both the train's maximum speed and the track's dimensions. Most modern high-speed trains do not exceed 350 km/h and trains exceeding this speed encounter several physical and electrical challenges; in the future this may lead to a separate designation for these even higher-speed trains. One of the most defining aspects of high-speed rail is the tracks on which the train travels, which must have high turn radii, and be welded together, and extremely well supported and anchored to avoid vibrations and other damage. The track itself in most cases is un-interrupted, with roads and other tracks crossing over bridges. Although almost every form of high-speed rail is electrically driven via overhead cables, this is not necessarily a defining aspect and other forms of propulsion, such as diesel locomotives, may be used. Magnetic levitation trains fall under the category of high-speed rail due to their association with track oriented vehicles; however their inability to operate on conventional railroads often leads to their classification in a separate category.
[edit] Rationale
In both Japan and France the initial impetus for the introduction of high speed rail was the need for additional capacity to meet increasing demand for passenger rail travel. By the mid-1950s, the Tōkaidō Main Line in Japan was operating at full capacity, and construction of the first segment of the Tōkaidō Shinkansen between Tokyo and Osaka started in 1959. The Tōkaidō Shinkansen opened on October 1, 1964, in time for the Tokyo Olympics. The situation for the first line in Japan was different than the subsequent lines. The route was already so densely populated and rail oriented that highway development would be extremely costly, and that one single line between Tokyo and Osaka could bring service to over half the nation's population, in 1959 that was nearly 45 million people, today well over 65 million. The Tokaido Shinkansen line is the most heavily traveled high speed line in the world, and still transports more passengers than all other high speed rail lines in the world combined, including in Japan. The subsequent lines in Japan had rationale more similar to situations in Europe.
In France the main line between Paris and Lyon was projected to run out of capacity by 1970, so it was decided to build a new line. In both cases the choice to build a completely separate passenger-only line allowed for the much straighter higher speed lines. The dramatically reduced travel times on both lines bringing cities within three hours of one another caused explosions in ridership[3]. It was the commercial success of both lines that inspired those countries and their economies to expand or start high speed rail networks.
In the United States the decades after World War II, improvements in automobiles and aircraft, severe antitrust restrictions on railroads, and government subsidization of highways and airports made those means practical for a greater portion of the population than previously.[citation needed] In Europe and Japan, emphasis was given to rebuilding the railways after the war. In the United States, emphasis was given to building a huge national interstate highway system and airports. Urban mass transport systems in the United States were largely eschewed in favor of road expansion.[citation needed] The U.S. railways have been less competitive partly because the government has tended to favour road and air transportation more than in Japan and European countries, and partly because of lower population density in the United States, but as energy costs increase, rail ridership is increasing across the country.[4]
Travel by rail becomes more competitive in areas of higher population density or where gasoline is expensive, because conventional trains are more fuel efficient than cars .[citation needed] Very few high-speed trains consume diesel or other fossil fuels but the power stations that provide electric trains with power can consume fossil fuels. In Japan and France, where the most extensive high speed rail networks exist, a large proportion of electricity comes from nuclear power.[citation needed] Even using electricity generated from coal or oil, trains are more fuel efficient per passenger per kilometer travelled than the typical automobile because of efficiencies of scale in generator technology.[citation needed] Rail networks, like highways, require large fixed capital investments and thus require a blend of high density and government investment to be competitive against existing capital infrastructure for aircraft and automobiles. Urban density and mass transit have been key factors in the success of European and Japanese railway transport, especially in countries such as the Netherlands, Belgium, Germany, Switzerland, Spain and France.[citation needed]
[edit] High-speed rail by country
- See also: Planned high-speed rail by country
High speed rail is defined as passenger rail running at a top speed of 125 mph (200 kph) or higher.
List of countries with maximum speed:
- Austria (under construction; 230 km/h,170 kph now.250 kph the record)[5]
- Belgium (300 km/h,240 and 160 kph trains,347 kph the record)[6]
- China (430 km/h,310,270,240,200 and 80 kph trains,502 kph the record with maglev and 387 for rail trains)[7]
- Finland (220 km/h,160 and 100 kph trains,255 kph the record)[8]
- France (370km/h,320 km/h,280,210 and 150 kph trains,574 kph the record WITH TGV)[9]
- Germany (330 km/h,300,240 and 160 kph trains,404 kph the record with ice 3)[10]
- Italy (300 km/h,260,200 and 140 kph trains,368 kph the record)[11]
- Japan (300 km/h,340,250 ,and 200 kph trains,422 wheeled record trains,is proposed a train fastech 360 which will run with 390 kph.)[12]
- The Netherlands (under construction; 300 km/h,190kph now ,350 kph the record)[13]
- Norway (210 km/h,160 and 100 kph trains,260 kph the record)[14]
- Portugal (220 km/h,180 and 120 kph trains,275 kph the record)[15]
- Russia (under construction; 300 km/h,210,170 and 100 kph now,260 kph the record)[16]
- South Korea (300 km/h,240,and 160 kph trains,355 the record)[17]
- Spain (300 km/h,240,160 kph trains,345 kph the record)[18]
- Sweden (205 km/h,150 and 100 kph trains,245 kph the record)[19]
- Turkey (under construction; 250 km/h,190,120 and 80 kph trains now,295 kph the record)[20]
- Taiwan (300 km/h,240 and 160 kph,350 kph the record)[21]
- United Kingdom (300 km/h,220,160 and 80 kph,325 kph the record)[22]
- United States (North-East Corridor) (240 km/h,200 and 140 kph trains,300-400 kph under construction with route FLY CALIFORNIA,295 kph the record)[23]
Canada(220,170,130 and 100 kph trains) Romania(150,110and 70 kph trains) Czech Republic(160,120and 80 kph trains) Switzerland(180,140 and 100 kph trains) Croatia(140,100 and 60 kph trains) Poland(150,110,70 kph trains} Greece(150,120 and 80 kph trains) Mexico(179,130 and 90 kph trains) Guatemala(120,90and 60 kph trains) New Zealand(160,125 and 90 kph trains) Mongolia(120.90.60 kph trains) Kazakhstan(170,120,70 kph trains) Indonesia(130,100 and 70 kph trains) Argentina(170,120 and 70 kph trains) North Korea(160,120 and 80 kph trains) India(180,120 and 60 kph trains) South Africa(200,140,80 kph trains)
[edit] Comparison with other modes of transport
High speed rail is often viewed as an isolated system and simply as advantageous or disadvantageous as compared to other transport systems, but all transport systems must work together to maximize benefits. A good HSR system has capacity for non-stop and local services, and has good connectivity with other transport systems. HSR, like any transport system, is not inherently convenient, fast, clean, nor comfortable. All of this depends on design, implementation, maintenance, operation and funding. Operational smoothness is often more indicative of discipline than technological prowess.
Due to current infrastructure designs in many nations, there are constraints on the growth of the highway and air travel systems. Some key factors promoting HSR is that airports and highways have no room to expand, and are often overloaded. High-speed rail has the potential for high capacity on its fixed corridors (double decked E4 Series Shinkansen can carry 1634 passengers, double that of an Airbus A380 in all economy class), and has the potential to relieve congestion on the other systems. Well established high speed rail systems in use today are more environmentally friendly than air or road travel. This is due to:
- lower energy consumption per passenger kilometer
- reduced land usage for a given capacity compared to motorways
- displaced usage from more environmentally damaging modes of transport.
[edit] Automobiles
High-speed rail has the advantage over automobiles in that it can move passengers at speeds far faster than those possible by car. The lower limit for HSR (200 km/h, 125 mph) is substantially faster than the highest road speed limit in any country. Ignoring the few countries without a general speed limit, the speed limit is rarely higher than 130 km/h (80 mph). For journeys that connect city center to city center, HSR's advantage is increased due to the lower speed limits within most urban areas. Generally, the longer the journey, the better the time advantage of rail over road if going to the same destination.
Moreover, train tracks permit a far higher throughput of passengers per hour than a road the same width. A high speed rail needs just a double track railway, one track for each direction. A typical capacity is 15 trains per hour and 800 passengers per train (as for the Eurostar sets), which implies a capacity of 12,000 passengers per hour in each direction. By way of contrast, the Highway Capacity Manual gives a maximum capacity for a single lane of highway of 2,250 passenger cars per hour (excluding trucks or RVs). Assuming an average vehicle occupancy of 1.57 people [24], a standard twin track railway has a typical capacity 13% greater than a 6-lane highway (3 lanes each way), while requiring only 40% of the land (1.0/3.0 versus 2.5/7.5 hectares per kilometer of direct/indirect land consumption). This means that typical passenger rail carries 2.83 times as many passengers per hour per meter (width) as a road. Some passenger rail systems, such as the Tokaido Shinkansen line in Japan, have much higher ratios (with as many as 20,000 passengers per hour per direction). Congested roadways tend to be commuter - these carry fewer than 1.57 persons per vehicle (Washington State Department of Transportation, for instance, uses 1.2 persons per vehicle) during commute times. Congestion also causes the maximum throughput of a lane to decrease.
[edit] Aircraft
[edit] Optimal distance
While commercial high-speed trains have maximum operating speeds much slower than jet aircraft, they have advantages over air travel mostly for relatively short distances, and can be an integral part of any good transportation system. They also connect city center rail stations to multiple other city center rail stations (with an intermediate stop passenger loading/unloading time of 3-8 minutes), while air transport necessarily connects airports outside city centers to other airports outside city centers (with a stop time for intermediate destinations of 30 minutes to 1 hour.) Both systems complement each other if they are well designed and maintained.
HSR is best suited for journeys of 2 - 3 hours (150-600 km or about 100-400 miles), for which the train can beat both air and car in this range. When traveling less than about 650 km (400 mi), the process of checking in and going through security screening at airports, as well as the journey to the airport itself makes the total air journey time no faster than HSR. However, anecdotally, competition authorities in Europe treat HSR for city pairs as competitive with passenger air at 4-4.5 hours, allowing on a 1-hour flight at least 40 minutes at each point for travel to and from the airport, checkin-security-boarding, disembarcation-baggage retrieval and other waits.
However, unless air travel is severely congested, merely providing a comparable service is often not a compelling financial basis for build an HSR system from scratch. As a rule of thumb, rail journeys need to be four hours or thereabouts to be competitive with air travel on journey time. One factor which may have a further bearing on HSR's competitiveness is the general lack of inconvenience when using HSR, for example the lack of a requirement to check baggage, or repeated queuing for checkin, security and boarding as well as the typically high on-time reliability as compared to air. Separately, from a business traveler's perspective, HSR can offer amenities such as cellular phone network availability and on for example Franco-German TGV-Est wireless internet broadband.
There are routes where high-speed trains have totally beaten air transport, so that there is no air connection anymore. Examples are Paris-Brussels and Cologne-Frankfurt. If the train stops at a big airport, like Paris and Frankfurt, these short distance airplanes lose an extra advantage for the many travellers who want to go to the airport for a long-distance journey. Air plane tickets can include a train segment for the journey, with guarranteed rebooking if the connection is missed, like normal air travel.
[edit] Other considerations
Although air travel has a speed advantage, trains can typically be boarded more quickly, and in a central location. This can mostly - or completely - offset the speed advantage of air travel. Many people live in suburbs of large cities and drive their own car to the airport when they want to fly. In a hub-and-spoke air system like in the USA, large airports are heavily favored by airlines because using them can increase load factor and thus profitability. Airlines do not want to commit to non-hub areas, which if along the route have the potential for benefit from supplementation with high speed rail. However, in a point-to-point air system like in Europe (where population density is higher), major air hubs are discouraged by low-cost carriers due to congestion and high landing costs. Therefore, travel between two minor cities is already better served by air.
Rail lines also permit far greater capacity and frequency of service than what is possible with aircraft, and rail schedules find fewer weather-related interruptions than do airline schedules. Although comfort over air travel is often believed to be a trait of high speed rail, it is not inherent, it depends on the specific implementation, for example in Japan, Shinkansen passengers often must stand the entire journey due to crowding, and queueing depends on supply, demand, design, funding, and operational issues. From the operator's point of view, a single train can call in at multiple stops, often far more stops than aircraft, and each stop takes much less down time. One train stopping pattern can allow a multitude of possible journeys, increasing the potential market.
In regards to large amounts of luggage, HSR can be trying compared to air travel, as storage space is limited, and in the case of Japan, trains can and often are crowded, have standing passengers, especially during rush hour and holidays.
High speed trains are more energy efficient than aircraft on a same load factor basis, as trains consume less energy per passenger kilometer. This may result in less carbon dioxide emissions, however this depends on each implementation's actual usage patterns and their indirect effects. Short-haul energy requirements for transporting people are generally more competitive on trains than long haul. (where rail competes best on time), because takeoff and landing have proportionately high energy requirements per km versus cruising.
From the point of view of required traffic control systems and infrastructure, high-speed rail has the added advantage of being much simpler to control due to its predictable course, even at very high passenger loads; this issue is becoming more relevant as air traffic reaches its safe limit in busy airspaces over London, New York, and other large centers. However, it must be noted that high speed rail systems eliminate the possibility of traffic collisions with automobiles (adding cost, simplicity, and safety), while other systems do not.
[edit] The history of a maximum speed
[edit] Maximum speed in service
Although one time specially modified system and trainset land speed record for railed vehicles make headlines, such as the 574.8 km/h TGV run or the non-wheeled 581 km/h JR-Maglev MLX01 run, they are far from typical situations as safety, cost, reliability, mass production are major concerns for high speed rail engineers and designers. If one wants to compete purely on records, railed vehicles have attained 10,400 km/h (6,462 mph) (rocket propulsion, unmanned, test of missiles etc, done in the USA).
What is more useful is the fastest maximum operating speed (MOR) of ANY segment of any high speed rail line, currently 320 km/h (198.9 mph), a record held by TGV and ICE service on part of the LGV Est Line in France. That line has now the fastest scheduled run in the world at 279.4 km/h from Lorraine-TGV to Champagne-Ardennes-TGV (167.66 km in 36 min), followed by other TGVs on the same section at 271.9 and 264.7 km/h.[25]
Former record holders were TGV Lyon-St Exupéry to Aix-en-Provence at 263.3 km/h (163.6 mph) and Nozomi Shinkansen at 261.8 km/h (162.7 mph) from Hiroshima to Kokura according to the last official Railway Gazette International World Speed Survey study in 2005. With the introduction of the new N700 Shinkansen on July 1, 2007, the Kokura to Hiroshima time may have decreased further.[26]
From 2011, new trains on the Japanese shinkansen will operate at up to 320 km/h. In the further future, several other lines are planned or proposed to operate at this speed, including a line to be built by the California High Speed Rail Authority (although that line will not be operational before 2025 even if financed as soon as possible).
[edit] Target areas for high-speed trains
- Main articles: High-speed rail by country and Planned high-speed rail by country
The early target areas, identified by France, Japan, and the U.S., were connections between pairs of large cities. In France this was Paris–Lyon, in Japan Tokyo–Osaka, and in the U.S. the proposals are in high-density areas. The only high-speed rail service at present in the U.S. is the Acela Express, in the Northeast Corridor between Boston, New York and Washington, D.C.; it uses tilting trains to achieve speeds of up to 240 km/h (150 mph) on existing tracks.
One notable fact is that in Europe, Korea, and Japan, dense networks of city subways and railways connect seamlessly with high speed rail lines. Despite efforts to create high speed rail in the USA, cities that lack dense intra-city rail infrastructure will find low ridership for high speed rail, as it is incompatible with existing automobile infrastructure. (People will want to drive when traveling in city, so they might as well drive the entire trip). Since in Japan intra-city rail daily usage per capita is the highest, it follows naturally that ridership of 6 billion passengers [3] exceeds the French TGV of 1 billion (until 2003), the only other system to reach a billion cumulative passengers. [4] For comparison, the world's fleet of 22,685 aircraft carried 2.1 billion passengers in 2006, according to International Civil Aviation Organization.
The California High Speed Rail Authority is currently studying a San Francisco Bay Area and Sacramento to Los Angeles and San Diego line. The Texas High Speed Rail and Transportation Corporation strives to bring Texas an innovative high-speed rail and multimodal transportation corridor. The Corporation developed the Brazos Express Corridor to link Central Texas.
Later high speed rail lines, such as the LGV Atlantique, the LGV Est, and most high speed lines in Germany, were designed as feeder routes branching into conventional rail lines, serving a larger number of medium-sized cities.
A side effect of the first high-speed rail lines in France was the opening up of previously isolated regions to fast economic development. Some newer high-speed lines have been planned primarily for this purpose, such as the Madrid–Sevilla line and the proposed Amsterdam–Groningen line. Cities relatively close to a major city may see an increase in population, but those farther away may actually lose population (except for tourist spots), having a ripple effect on local economies.
Five years after construction began on the line, the first Japanese high-speed rail line opened on the eve of the 1964 Olympics in Tokyo, connecting the capital with Osaka. The first French high-speed rail line, or Ligne à grande vitesse (LGV), was opened in 1981 by SNCF, the French rail agency, planning starting in 1966 and construction in 1976.
Market segmentation has principally focused on the business travel market. The French original focus on business travelers is reflected by the early design of the TGV trains, including the bar car. Pleasure travel was to be a secondary market; now many of the French extensions connect with vacation beaches on the Atlantic and Mediterranean, as well as major amusement parks and also the very popullar Alpine ski resorts in France or Switzerland. Friday evenings are the peak time for TGVs (train à grande vitesse) (Metzler, 1992). The system has lowered prices on long distance travel to compete more effectively with air services, and as a result some cities within an hour of Paris by TGV have become commuter communities, thus increasing the market while restructuring land use.
On the Paris - Lyon service, the number of passengers grew to impressive numbers justifying the introduction of double-decks coaches on the TGV trainsets.
Other target areas include freight lines, such as the Trans-Siberian Railway in Russia, which would be allow 3 day Far East to Europe service for freight as opposed to months by ship (but still slower than air), and allow just in time deliveries. High speed north-south freight lines in Switzerland are under construction, avoiding slow mountainous truck traffic, and lowering labour costs.
[edit] Technology
Much of the technology behind high-speed rail is an improved application of mature standard gauge rail technology using overhead electrification. By building a new rail infrastructure with 20th century engineering, including elimination of constrictions such as roadway at-grade (level) crossings, frequent stops, a succession of curves and reverse curves, and not sharing the right-of-way with freight or slower passenger trains, higher speeds (250–320 km/h) are maintained. Total cost of ownership of HSR systems is generally lower than the total costs of competing alternatives (new highway or air capacity). Japanese systems are often more expensive than their counterparts but more comprehensive because they have their own dedicated elevated guideway, no traffic crossings, and disaster monitoring systems. Despite this, the lion's share of the Japanese system's cost is related to boring tunnels through mountains, as was in Taiwan. Recent advances in wheeled trains in the last few decades have pushed the speed limits past 400 km/h, among the advances being tilting trainsets, aerodynamic designs (to reduce drag, lift, and noise), air brakes, regenerative braking, stronger engines, dynamic weight shifting, etc. Some of the advances were to fix problems, like the Eschede disaster. The record speed for a wheeled electric train is 574.8 km/h is held by a shortened TGV train and long straight highly modified track. The record speed for an unmodified commercial trainset is 403.7 km/h, held by the Velaro E. European high-speed routes typically combine segments on new track, where the train runs at full commercial speed, with some sections of older track on the extremities of the route, near cities.
In France, the cost of construction (which was €10 million/km (US$15.1 million/km) for LGV Est) is minimised by adopting steeper grades rather than building tunnels and viaducts. However, in mountainous Switzerland, tunnels are inevitable. Because the lines are dedicated to passengers, gradients of 3.5%, rather than the previous maximum of 1–1.5% for mixed traffic, are used. Possibly more expensive land is acquired in order to build straighter lines which minimize line construction as well as operating and maintenance costs. In other countries high-speed rail was built without those economies so that the railway can also support other traffic, such as freight. Experience has shown however, that trains of significantly different speeds cause massive decreases of line capacity. As a result, mixed-traffic lines are usually reserved for high-speed passenger trains during the daytime, while freight trains go at night. In some cases, nighttime high-speed trains are even diverted to lower speed lines in favor of freight traffic.
歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具、協助客戶設計刀具流程、DIN or JIS 鎢鋼切削刀具設計、NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計、超高硬度的切削刀具、醫療配件刀具設計、汽車業刀具設計、電子產業鑽石刀具、木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!
BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS DIN Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、NAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill、disc milling cutter,Aerospace cutting tool、hss drill’Фрезеры’Carbide drill、High speed steel、Milling cutter、CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN or JIS tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.
ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな
情報を受け取って頂き、もっと各産業に競争力プラス展開。
弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、
豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。
弊社は各領域に供給できる内容は:
(3)鎢鋼エンド・ミル設計
(4)航空エンド・ミル設計
(5)超高硬度エンド・ミル
(7)医療用品エンド・ミル設計
弊社の製品の供給調達機能は:
(4)オートメーション整備調達
弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。
BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.
BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.
No comments:
Post a Comment