Monday, May 19, 2008

Cast iron English www.tool-tool.com


Bewise Inc. www.tool-tool.com Reference source from the internet.

v d e
Iron alloy phases

Austenite (γ-iron; hard)
Bainite
Martensite
Cementite (iron carbide; Fe3C)
Ledeburite (ferrite - cementite eutectic, 4.3% carbon)
Ferrite (α-iron, δ-iron; soft)
Pearlite (88% ferrite, 12% cementite)
Spheroidite

Types of steel

Carbon steel (≤2.1% carbon; low alloy)
Stainless steel (steel with chromium)
HSLA steel (high strength low alloy)
Tool steel (very hard)

Other iron-based materials

Cast iron (>2.1% carbon)
Wrought iron (contains slag)
Ductile iron


Iron-Cementite meta-stable diagram.

Iron-Cementite meta-stable diagram.

Cast iron usually refers to grey cast iron, but identifies a large group of ferrous alloys, which solidify with a eutectic. The color of a fractured surface can be used to identify an alloy. White cast iron is named after its white surface when fractured due to its carbide impurities which allow cracks to pass straight through. Grey cast iron is named after its grey fractured surface, which occurs because the graphitic flakes deflect a passing crack and initiate countless new cracks as the material breaks.

Iron (Fe) accounts for more than 95 %wt of the alloy material, while the main alloying elements are carbon (C) and silicon (Si). The amount of carbon in cast irons is 2.1-4 %wt. Cast irons contain appreciable amounts of silicon, normally 1-3 %wt, and consequently these alloys should be considered ternary Fe-C-Si alloys. Despite this, the principles of cast iron solidification are understood from the binary iron-carbon phase diagram, where the eutectic point lies at 1154 °C and 4.3 wt% carbon. Since cast iron has nearly this composition, its melting temperature of 1150 to 1200 °C is about 300 °C lower than the melting point of pure iron.

Cast iron tends to be brittle, except for malleable cast irons. With its low melting point, good fluidity, castability, excellent machinability and wear resistance, cast irons have become an engineering material with a wide range of applications, including pipes, machine and car parts.

[edit] Production

Cast iron is made by remelting pig iron, often along with substantial quantities of scrap iron and scrap steel, and taking various steps to remove undesirable contaminants such as phosphorus and sulfur. Depending on the application, carbon and silicon content are reduced to the desired levels, which may be anywhere from 2% to 3.5% and 1% to 3% respectively. Other elements are then added to the melt before the final form is produced by casting.

Iron is most commonly melted in a small blast furnace known as a cupola (see blast furnace for more details). After melting is complete, the molten iron is removed or ladled from the forehearth of the blast furnace. This process was devised by the Chinese, whose innovative ideas revolutionized the field of metallurgy. Previously, iron was melted in an air furnace, which is a type of reverberatory furnace.

[edit] Varieties of cast iron

[edit] Grey cast iron

Cast iron drain, waste and vent piping in a Canadian timber-frame building in Mission, British Columbia in the 1980s.

Cast iron drain, waste and vent piping in a Canadian timber-frame building in Mission, British Columbia in the 1980s.
Main article: Grey iron

Silicon is essential to making grey cast iron as opposed to white cast iron. When silicon is alloyed with ferrite and carbon in amounts of about 2 percent, the carbide of iron becomes unstable. Silicon causes the carbon to rapidly come out of solution as graphite, leaving a matrix of relatively pure, soft iron. Weak bonding between planes of graphite lead to a high activation energy for growth in that direction, resulting in thin, round flakes. This structure has several useful properties.

The metal expands slightly on solidifying as the graphite precipitates, resulting in sharp castings. The graphite content also offers good corrosion resistance.

Graphite acts as a lubricant, improving wear resistance. The exceptionally high speed of sound in graphite gives cast iron a much higher thermal conductivity. Since ferrite is so different in this respect (having heavier atoms, bonded much less tightly) phonons tend to scatter at the interface between the two materials. In practical terms, this means that cast iron tends to “damp” mechanical vibrations (including sound), which can help machinery to run more smoothly.

All of the properties listed in the paragraph above ease the machining of grey cast iron. The sharp edges of graphite flakes also tend to concentrate stress, allowing cracks to form much more easily, so that material can be removed much more efficiently.

Easier initiation of cracks can be a drawback once an item is finished, however: grey cast iron has less tensile strength and shock resistance than steel. It is also difficult to weld.

Grey cast iron's high thermal conductivity and specific heat capacity are often exploited to make cast iron cookware and disc brake rotors.

[edit] Other cast iron alloys

An illustration of furnace bellows operated by waterwheels, from the Nong Shu, by Wang Zhen, 1313 AD, during the Chinese Yuan Dynasty.

An illustration of furnace bellows operated by waterwheels, from the Nong Shu, by Wang Zhen, 1313 AD, during the Chinese Yuan Dynasty.

With a lower silicon content and faster cooling, the carbon in white cast iron precipitates out of the melt as the metastable phase cementite, Fe3C, rather than graphite. The cementite which precipitates from the melt forms as relatively large particles, usually in a eutectic mixture where the other phase is austenite (which on cooling might transform to martensite). These eutectic carbides are much too large to provide precipitation hardening (as in some steels, where cementite precipitates might inhibit plastic deformation by impeding the movement of dislocations through the ferrite matrix). Rather, they increase the bulk hardness of the cast iron simply by virtue of their own very high hardness and their substantial volume fraction, such that the bulk hardness can be approximated by a rule of mixtures. In any case, they offer hardness at the expense of toughness. Since carbide makes up a large fraction of the material, white cast iron could reasonably be classified as a cermet. White iron is too brittle for use in many structural components, but with good hardness and abrasion resistance and relatively low cost, it finds use in such applications as the wear surfaces (impeller and volute) of slurry pumps, shell liners and lifter bars in ball mills and autogenous grinding mills, balls and rings in coal pulverisers and (conceivably?) balls for rolling-element bearings and the teeth of a backhoe's digging bucket (although the latter two applications would normally use high quality wrought high-carbon martensitic steels and cast medium-carbon martensitic steels respectively).

It is difficult to cool thick castings fast enough to solidify the melt as white cast iron all the way through. However, rapid cooling can be used to solidify a shell of white cast iron, after which the remainder cools more slowly to form a core of grey cast iron. The resulting casting, called a “chilled casting”, has the benefits of a hard surface and a somewhat tougher interior.

White cast iron can also be made by using a high percentage of chromium in the iron; Cr is a strong carbide-forming element, so at high enough percentages of chrome, the precipitation of graphite out of the iron is suppressed. High-chrome white iron alloys allow massive castings (for example, a 10-tonne impeller) to be sand cast, i.e., a high cooling rate is not required, as well as providing impressive abrasion resistance.

Malleable iron starts as a white iron casting, that is then heat treated at about 900 °C. Graphite separates out much more slowly in this case, so that surface tension has time to form it into spheroidal particles rather than flakes. Due to their lower aspect ratio, spheroids are relatively short and far from one another, and have a lower cross section vis-a-vis a propagating crack or phonon. They also have blunt boundaries, as opposed to flakes, which alleviates the stress concentration problems faced by grey cast iron. In general, the properties of malleable cast iron are more like mild steel. There is a limit to how large a part can be cast in malleable iron, since it is made from white cast iron.

A more recent development is nodular or ductile cast iron. Tiny amounts of magnesium or cerium added to these alloys slow down the growth of graphite precipitates by bonding to the edges of the graphite planes. Along with careful control of other elements and timing, this allows the carbon to separate as spheroidal particles as the material solidifies. The properties are similar to malleable iron but parts can be cast with larger sections.

Comparative qualities of cast irons[1]
Name Nominal composition [% by weight] Form and condition Yield strength [ksi (0.2% offset)] Tensile strength [ksi] Elongation [% (in 2 inches)] Hardness [Brinell scale] Uses
Cast grey iron (ASTM A48) C 3.4, Si 1.8, Mn 0.5 Cast 25 0.5 180 Engine blocks, fly-wheels, gears, machine-tool bases
White C 3.4, Si 0.7, Mn 0.6 Cast (as cast) 25 0 450 Bearing surfaces
Malleable iron (ASTM A47) C 2.5, Si 1.0, Mn 0.55 Cast (annealed) 33 52 12 130 Axle bearings, track wheels, automotive crankshafts
Ductile or nodular iron C 3.4, P 0.1, Mn 0.4, Ni 1.0, Mg 0.06 Cast 53 70 18 170 Gears, cams, crankshafts
Ductile or nodular iron (ASTM A339) Cast (quench tempered) 108 135 5 310
Ni-hard type 2 C 2.7, Si 0.6, Mn 0.5, Ni 4.5, Cr 2.0 Sand-cast 55 550 Strength
Ni-resist type 2 C 3.0, Si 2.0, Mn 1.0, Ni 20.0, Cr 2.5 Cast 27 2 140 Resistance to heat and corrosion

[edit] Historical uses

A cast iron wagon wheel

A cast iron wagon wheel

Because cast iron is comparatively brittle, it is not suitable for purposes where a sharp edge or flexibility is required. It is strong under compression, but not under tension. Cast Iron was first invented in China (see also: Du Shi), and poured into molds to make weapons and figurines. Historically, its earliest uses included cannon and shot. In England, the ironmasters of the Weald continued producing these until the 1760s, and this was the main function of the iron industry there after the Restoration, though probably only a minor part of the industry there earlier.

Cast iron pots were made at many English blast furnaces at that period. In 1707, Abraham Darby patented a method of making pots (and kettles) thinner and hence cheaper than his rivals could. This meant that his Coalbrookdale Furnaces became dominant as suppliers of pots, an activity in which they were joined in the 1720s and 1730s by a small number of other coke-fired blast furnaces.

The development of the steam engine by Thomas Newcomen provided a further market for cast iron, since this was considerably cheaper than the brass of which the engine cylinders were originally made. A great exponent of cast iron was John Wilkinson, who amongst other things cast the cylinders for many of James Watt's improved steam engines until the establishment of the Soho Foundry in 1795.

[edit] Cast iron bridges

The major use of cast iron for structural purposes began in the late 1770s when Abraham Darby III built the Iron Bridge, although short beams had been used prior to the bridge, such as in the blast furnaces at Coalbrookdale. This was followed by others, including Thomas Paine, who patented one; cast iron bridges became common as the Industrial Revolution gathered pace. Thomas Telford adopted the material for his bridge upstream at Buildwas, and then for a canal trough aqueduct at Longdon-on-Tern on the Shrewsbury Canal. It was followed by the spectacular Chirk Aqueduct and the breath-taking Pontcysyllte Aqueduct, both of which remain in use following recent restorations. Cast iron beam bridges were used widely by the early railways, such as the Water street bridge at the Manchester terminus of the Liverpool and Manchester Railway. However, problems arose when such a bridge collapsed shortly after opening in 1846. The Dee bridge disaster was caused by excessive loading at the centre of the beam by a passing train, and many similar bridges had to be demolished and rebuilt, often in wrought iron. The bridge had been under-designed, being trussed with wrought iron straps, which were wrongly thought to reinforce the structure. Nevertheless, cast iron continued to be used for structural support, until the Tay Rail Bridge disaster of 1879 created a crisis of confidence in the material. Further bridge collapses occurred, however, culminating in the Norwood Junction rail accident of 1891. Thousands of cast iron rail under-bridges were eventually replaced by steel equivalents.

[edit] Textile mills

Another important use was in textile mills. The air in these contained flammable fibres from the cotton, hemp, or wool being spun. As a result, textile mills had an alarming propensity to burn down. The solution was to build them completely of non-combustible materials, and it was found convenient to provide the building with an iron frame, largely of cast iron. This replaced flammable wood. The first such building was at Ditherington in Shrewsbury, Shropshire. Many other warehouses were built using cast iron columns and beams, although there were many collapses owing to faulty designs, flawed beams or overloading.

During the Industrial Revolution, cast iron was also widely used for the frame and other fixed parts of machinery, including spinning and later weaving machinery in the textile mills. Cast iron became a widespread material, and many towns had foundries producing machinery, not only for industry but also agriculture.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

No comments: