Monday, March 30, 2009

Basa Sunda Trafo www.tool-tool.com

Bewise Inc. www.tool-tool.com Reference source from the internet.

Three-phase pole-mounted step-down transformer.

Trafo nyaéta hiji alat listrik nu kagunaannana pikeun mindahkeun énérgi listrik ti hiji sirkuit ka sirkuit séjénna ngaliwatan gulungan-gulungan kawat anu babarengan diinduksi ku hiji medan magnét. Hiji trafo diwangun ku hiji inti (biasana tina beusi) sarta dua gulungan atawa leuwih nu dibeulitkeun kana inti. Arus bulak-balik dina salasahiji gulungan ngabangkitkeun médan magnét nu robah-robah dina jero intina, numana ahirna ngainduksi (ngarangsang ngabangkitkeun) tegangan dina gulungan liana. Trafo dipaké keur naékkeun atawa nurunkeun tegangan atawa arus listrik, keur ngarobah impedansi, sarta keur nyadiakeun isolasi listrik antar rangkéan.

[édit] Sawangan

Artikel ieu keur dikeureuyeuh, ditarjamahkeun tina basa Inggris.
Bantosanna diantos kanggo narjamahkeun.

The transformer is one of the simplest of electrical devices. Its basic design has not changed over the last one hundred years, yet transformer designs and materials continue to be improved. Transformers are essential for high voltage power transmission, which makes long distance transmission economically practical. This advantage was the principal factor in the selection of alternating current power transmission in the "War of Currents" in the late 1880s.

Audio frequency transformers (at the time called repeating coils) were used by the earliest experimenters in the development of the telephone. While some electronics applications of the transformer have been made obsolete by new technologies, transformers are still found in many electronic devices.

Transformers come in a range of sizes from a thumbnail-sized coupling transformer hidden inside a stage microphone to huge gigawatt units used to interconnect large portions of national power grids. All operate with the same basic principles and with many similarities in their parts.

Gambar:Polemount-singlephase-closeup.jpg

Single phase pole-mounted step-down transformer

However, transformers are components of the systems that perform all these functions.

[édit] Analogi

The transformer may be considered as a simple two-wheel 'gearbox' for electrical voltage and current. The primary winding is analogous to the input shaft and the secondary winding to the output shaft. In this analogy, current is equivalent to shaft speed, voltage to shaft torque. In a gearbox, mechanical power (torque multiplied by speed) is constant (neglecting losses) and is equivalent to electrical power (voltage multiplied by current) which is also constant.

The gear ratio is equivalent to the transformer step-up or step-down ratio. A step-up transformer acts analogously to a reduction gear (in which mechanical power is transferred from a small, rapidly rotating gear to a large, slowly rotating gear): it trades current (speed) for voltage (torque), by transferring power from a primary coil to a secondary coil having more turns. A step-down transformer acts analogously to a multiplier gear (in which mechanical power is transferred from a large gear to a small gear): it trades voltage (torque) for current (speed), by transferring power from a primary coil to a secondary coil having fewer turns.

[édit] Prinsip dasar

[édit] Coupling by mutual induction

A simple transformer consists of two electrical conductors called the primary winding and the secondary winding. Energy is coupled between the windings by the time-varying magnetic flux that passes through (links) both primary and secondary windings.When the current in a coil is switched on or off or changed, a voltage is induced in a neighbouring coil. The effect, called mutual inductance, is an example of electromagnetic induction.

[édit] Analisis dasar

Practical transformer showing magnetising flux in the core

If a time-varying voltage {v_P}\, is applied to the primary winding of N_P\, turns, a current will flow in it producing a magnetomotive force (MMF). Just as an electromotive force (EMF) drives current around an electric circuit, so MMF tries to drive magnetic flux through a magnetic circuit. The primary MMF produces a varying magnetic flux \Phi_P\, in the core, and, with an open circuit secondary winding, induces a back electromotive force (EMF) in opposition to {v_P}\, . In accordance with Faraday's law of induction, the voltage induced across the primary winding is proportional to the rate of change of flux:

{v_P} = {N_P} \frac {d \Phi_P}{dt} and {v_S} = {N_S} \frac {d \Phi_S}{dt}

Saying that the primary and secondary windings are perfectly coupled is equivalent to saying that \Phi_P = \Phi_S\, . Substituting and solving for the voltages shows that:

\frac{v_P}{v_S}=\frac{N_P}{N_S}

where

  • vp and vs are voltages across primary and secondary,
  • Np and Ns are the numbers of turns in the primary and secondary , respectively.

Hence in an ideal transformer, the ratio of the primary and secondary voltages is equal to the ratio of the number of turns in their windings, or alternatively, the voltage per turn is the same for both windings. The ratio of the currents in the primary and secondary circuits is inversely proportional to the turns ratio. This leads to the most common use of the transformer: to convert electrical energy at one voltage to energy at a different voltage by means of windings with different numbers of turns. In a practical transformer, the higher-voltage winding will have more turns, of smaller conductor cross-section, than the lower-voltage windings.

The EMF in the secondary winding, if connected to an electrical circuit, will cause current to flow in the secondary circuit. The MMF produced by current in the secondary opposes the MMF of the primary and so tends to cancel the flux in the core. Since the reduced flux reduces the EMF induced in the primary winding, increased current flows in the primary circuit. The resulting increase in MMF due to the primary current offsets the effect of the opposing secondary MMF. In this way, the electrical energy fed into the primary winding is delivered to the secondary winding. Also because of this, the flux density will always stay the same as long as the primary voltage is steady.

For example, suppose a power of 50 watts is supplied to a resistive load from a transformer with a turns ratio of 25:2.

  • P = EI (power = electromotive force × current)
50 W = 2 V × 25 A in the primary circuit if the load is a resistive load. (See note 1)
  • Now with transformer change:
50 W = 25 V × 2 A in the secondary circuit.

[édit] Analisis trafo bulak-balik

This treats the windings as a pair of mutually coupled coils with both primary and secondary windings passing currents. In an ideal transformer the primary MMF must equal the secondary MMF, and since these are in opposite directions, they oppose so that there is no overall resultant flux in the core. That this is so can be seen by realising that any unopposed primary emf would create a large primary current and therefore a large flux in the core due to the primary winding. However, this large flux would necessarily cause a large current to flow in the secondary circuit and this current must create an opposing flux that effectively cancels the initiating primary flux.

In a non-ideal transformer, the resultant flux in the core is that needed to magnetise the core. This is called the magnetising flux.

[édit] Arus saarah

Transformers should not be driven with DC nor, generally, have any DC component present at the input. Relatively small amounts of direct current can cause core saturation and thus prevent proper operation. Also, since a DC voltage source would not give a time-varying flux in the core, no induced counter-EMF would be generated and so current flow into the transformer would be limited only by the series resistance of the windings. In this situation, the transformer would heat until the transformer either reaches thermal equilibrium or is destroyed. This principle is actually exploited when large power transformers must be dried (have condensation and other water removed from their windings) — they are simply heated using DC.

For the same reason, transformers should generally not have DC components present in their output windings. A notable violation of this rule occurs with half-wave rectifiers, where the transformer winding must also carry the DC load current; these circuits are usually used in low-power applications because of this. Full-wave rectifiers, by comparison, do not require direct current to flow through the transformer and so are capable of much higher power levels.

[édit] Persamaan emf unifersal

If the flux in the core is sinusoidal, the relationship for either winding between its number of turns, voltage, magnetic flux density and core cross-sectional area is given by the universal emf equation (from Faraday's law):

 E={\frac {2 \pi f N a B} {\sqrt{2}}} \!=4.44 f N a B

Other consistent systems of units can be used with the appropriate conversions in the equation.

Many others have patents on transformers.

[édit] Pertimbangan parktis

[édit] Klasifikasi

sirkuit

Standard symbols

Transformer with two windings and iron core.

Transformer with three windings.
The dots show the relative winding configuration of the windings.

Step-down or step-up transformer.

The symbol shows which winding has more turns,

but does not usually show the exact ratio.

Transformer with electrostatic screen,
which prevents capacitive coupling between the windings.

[édit] Karugian

An ideal transformer would have no losses, and would therefore be 100% efficient. In practice, energy is dissipated due both to the resistance of the windings known as copper loss or I2 R loss, and to magnetic effects primarily attributable to the core (known as iron loss measured in watts per pound). Transformers are, in general, highly efficient. Large power transformers (over 50 MVA) may attain an efficiency as high as 99.75%. Small transformers, such as a plug-in "power brick" used to power small consumer electronics, may be less than 85% efficient.

Transformer losses arise from:

  • Winding resistance

Current flowing through the windings causes resistive heating of the conductors (I2 R loss). At higher frequencies, skin effect and proximity effect create additional winding resistance and losses.

  • Eddy currents

Induced eddy currents circulate within the core, causing resistive heating. Silicon is added to the steel to help in controlling eddy currents. Adding silicon also has the advantage of stopping aging of the electrical steel that was a problem years ago.

  • Hysteresis losses

Each time the magnetic field is reversed, a small amount of energy is lost to hysteresis within the magnetic core. The amount of hysteresis is a function of the particular core material.

  • Magnetostriction

Magnetic flux in the core causes it to physically expand and contract slightly with the alternating magnetic field, an effect known as magnetostriction. This in turn causes losses due to frictional heating in susceptible ferromagnetic cores.

  • Mechanical losses

In addition to magnetostriction, the alternating magnetic field causes fluctuating electromagnetic forces between the primary and secondary windings. These incite vibrations within nearby metalwork, creating a familiar humming or buzzing noise, and consuming a small amount of power.

  • Stray losses

Not all the magnetic field produced by the primary is intercepted by the secondary. A portion of the leakage flux may induce eddy currents within nearby conductive objects, such as the transformer's support structure, and be converted to heat.

  • Cooling system

Large power transformers may be equipped with cooling fans, oil pumps or water-cooled heat exchangers designed to remove the heat caused by copper and iron losses. The power used to operate the cooling system is typically considered part of the losses of the transformer.

[édit] Operasi dina frékuénsi nu béda

The equation shows that the EMF of a transformer at a given flux density increases with frequency. By operating at higher frequencies, transformers can be physically more compact without reaching saturation, and a given core is able to transfer more power. However, other properties of the transformer such as losses due to the core and skin-effect also increase with frequency. Generally, operation of a transformer at it's designed voltage but at a higher frequency than will lead to reduced magnetising (no load primary) current. At a frequency lower than the design value, with the rated voltage applied, the magnetising current may increase to an excessive level.

Steel cores develop a larger hysteresis loss due to eddy currents as the operating frequency is increased. Ferrite, or thinner steel laminations for the core are typically used for frequencies above 1kHz. The thinner steel laminations serve to reduce the eddy currents. Some types of very thin steel laminations can be ran up to 10 kHz or more. Ferrite is used in higher frequencies up to the VHF band and beyond. Aircraft traditionally use 400 Hz power systems since the slight increase in thermal losses is more than offset by reduced weight. Military gear includes 400 Hz (and other frequencies) to supply power for radar or servomechanisms.

Flyback transformers are built using ferrite cores. They supply high voltage to the CRTs at the frequency of the horizontal oscillator. In the case of television sets, this is about 15.7kHz. It may be as high as 75 - 120kHz for high-resolution computer monitors.

Switching power supply transformers usually operate between 50-1000 kHz. The tiny cores found in wristwatch backlight power supplies produce audible sound (about 1 kHz).

Operation of a power transformer at other than its design frequency may require assessment of voltages, losses, and cooling to establish if safe operation is practical. For example, transformers at hydroelectric generating stations may be equipped with over-excitation protection, so-called "volts per hertz" protection relays, to protect the transformer from overvoltage at higher-than-rated frequency which may occur if a generator loses its connected load.

[édit] Construksi

[édit] Inti

[édit] Inti waja

Gambar:Transformer.filament.agr.jpg

Laminated core transformer showing edge of laminations at top of unit.

Transformers for use at power or audio frequencies have cores made of many thin laminations of silicon steel. By concentrating the magnetic flux, more of it is usefully linked by both primary and secondary windings. Since the steel core is conductive, it, too, has currents induced in it by the changing magnetic flux. Each layer is insulated from the adjacent layer to reduce the energy lost to eddy current heating of the core. The thin laminations are used to reduce the eddy currents, and the insulation is used to keep the laminations from acting as a solid piece of steel. The thinner the laminations, the lower the eddy currents, and the lower the losses. Very thin laminations are generally used on high frequency transformers. The cost goes up when using thinner laminations mainly over the labor in stacking them. A typical laminated core is made from E-shaped and I-shaped pieces, leading to the name "EI transformer". There is other types such as the C-core or "cut core" transformer. In the EI transformer, the laminations are stacked in what is known as an interleaved fashion. This is where the E and I pieces are staggered while stacking to reduce any gap. If a gap is needed, all the E's are stacked on one side, and all the I's on the other creating a gap.

The cut core or C-core is made by winding a silicon steel strip around a rectangular form. After the required thickness is achieved, it is removed from the form and the laminations are bonded together. It is then cut in two forming two C shapes. The faces of the cuts are then ground smooth so they fit very tight with a very small gap to reduce losses. To use a C-core, a coil is wound which is then placed over a leg of one half of the core. The core is then assembled by placing the two C halves together, and holding them closed by a steel strap. In this type of core, the coil will be on one leg, and the other is bare. There is shell type cores available which are similar to the EI cores.

A steel core's remanence means that it retains a static magnetic field when power is removed. When power is then reapplied, the residual field will cause a high inrush current until the effect of the remanent magnetism is reduced, usually after a few cycles of the applied alternating current. Overcurrent protection devices such as fuses must be selected to allow this harmless inrush to pass. On transformers connected to long overhead power transmission lines, induced currents due to geomagnetic disturbances during solar storms can cause saturation of the core, and false operation of transformer protection devices.

Distribution transformers can achieve low off-load losses by using cores made with low loss high permeability silicon steel and amorphous (non-crystalline) steel, so-called "metal glasses" — the high cost of the core material is offset by the lower losses incurred at light load, over the life of the transformer. In order to maintain good voltage regulation, distribution transformers are designed to have very low leakage inductance.

Certain special purpose transformers use long magnetic paths, insert air gaps, or add magnetic shunts (which bypass a portion of magnetic flux that would otherwise link the primary and secondary windings) in order to intentionally add leakage inductance. The additional leakage inductance limits the secondary winding's short circuit current to a safe, or a controlled, level. This technique is used to stabilize the output current for loads that exhibit negative resistance such as electric arcs, mercury vapor lamps, and neon signs, or safely handle loads that may become periodically short-circuited such as electric arc welders. Gaps are also used to keep a transformer from saturating, especially audio transformers which have a DC component added.

[édit] Inti padet

Powdered iron cores are used in circuits (such as switch-mode power supplies) that operate above mains frequencies and up to a few tens of kilohertz. These materials combine high magnetic permeability with high bulk electrical resistivity.

At even higher, radio-frequencies (RF), other types of cores made from non-conductive magnetic ceramic materials, called ferrites, are common. Some RF transformers also have moveable cores (sometimes called slugs) which allow adjustment of the coupling coefficient (and bandwidth) of tuned radio-frequency circuits.

[édit] Inti udara

High-frequency transformers may also use air cores. These eliminate the loss due to hysteresis in the core material. Such transformers maintain high coupling efficiency (low stray field loss) by overlapping the primary and secondary windings.

[édit] Inti toroid

Various transformers. The top right is toroidal. The bottom right is from a 12 VAC wall wart supply.

Toroidal transformers are built around a ring-shaped core, which is made from a long strip of silicon steel or permalloy wound into a coil, from powdered iron, or ferrite, depending on operating frequency. The strip construction ensures that the grain boundaries are optimally aligned, improving the transformer's efficiency by reducing the core's reluctance. The closed ring shape eliminates air gaps inherent in the construction of an EI core. The cross-section of the ring is usually square or rectangular, but more expensive cores with circular cross-sections are also available. The primary and secondary coils are often wound concentrically to cover the entire surface of the core. This minimises the length of wire needed, and also provides screening to minimize the core's magnetic field from generating electromagnetic interference.

Ferrite toroid cores are used at higher frequencies, typically between a few tens of kilohertz to a megahertz, to reduce losses, physical size, and weight of switch-mode power supplies.

Toroidal transformers are more efficient than the cheaper laminated EI types of similar power level. Other advantages, compared to EI types, include smaller size (about half), lower weight (about half), less mechanical hum (making them superior in audio amplifiers), lower exterior magnetic field (about one tenth), low off-load losses (making them more efficient in standby circuits), single-bolt mounting, and more choice of shapes. This last point means that, for a given power output, either a wide, flat toroid or a tall, narrow one with the same electrical properties can be chosen, depending on the space available. The main disadvantages are higher cost and limited size.

A drawback of toroidal transformer construction is the higher cost of windings. As a consequence, toroidal transformers are uncommon above ratings of a few kVA. Small distribution transformers may achieve some of the benefits of a toroidal core by splitting it and forcing it open, then inserting a bobbin containing primary and secondary windings.

When fitting a toroidal transformer, it is important to avoid making an unintentional short-circuit through the core. This can happen if the steel mounting bolt in the middle of the core is allowed to touch metalwork at both ends, making a loop of conductive material which passes through the hole in the toroid. Such a loop could result in a dangerously large current flowing in the bolt.

[édit] Beulitan

The wire of the adjacent turns in a coil, and in the different windings, must be electrically insulated from each other. The wire used is generally magnet wire. Magnet wire is a copper wire with a coating of varnish or some other synthetic coating. Transformers for years have used Formvar wire which is a varnished type of magnet wire.

The conducting material used for the winding depends upon the application. Small power and signal transformers are wound with solid copper wire, insulated usually with enamel, and sometimes additional insulation. Larger power transformers may be wound with wire, copper, or aluminum rectangular conductors. Strip conductors are used for very heavy currents. High frequency transformers operating in the tens to hundreds of kilohertz will have windings made of Litz wire to minimize the skin effect losses in the conductors. Large power transformers use multiple-stranded conductors as well, since even at low power frequencies non-uniform distribution of current would otherwise exist in high-current windings. Each strand is insulated from the other, and the strands are arranged so that at certain points in the winding, or throughout the whole winding, each portion occupies different relative positions in the complete conductor. This "transposition" equalizes the current flowing in each strand of the conductor, and reduces eddy current losses in the winding itself. The stranded conductor is also more flexible than a solid conductor of similar size. (see reference (1) below)

For signal transformers, the windings may be arranged in a way to minimise leakage inductance and stray capacitance to improve high-frequency response. This can be done by splitting up each coil into sections, and those sections placed in layers between the sections of the other winding. This is known as a stacked type or interleaved winding.

Windings on both the primary and secondary of power transformers may have external connections (called taps) to intermediate points on the winding to allow adjustment of the voltage ratio. Taps may be connected to an automatic, on-load tap changer type of switchgear for voltage regulation of distribution circuits. Audio-frequency transformers, used for the distribution of audio to public address loudspeakers, have taps to allow adjustment of impedance to each speaker. A center-tapped transformer is often used in the output stage of an audio power amplifier in a push-pull type circuit. Modulation transformers in AM transmitters are very similar. Tapped transformers are also used as components of amplifiers, oscillators, and for feedback linearization of amplifier circuits.

[édit] Isolasi

The turns of the windings must be insulated from each other to ensure that the current travels through the entire winding. The potential difference between adjacent turns is usually small, so that enamel insulation is usually sufficient for small power transformers. In larger transformers additional layers of insulation are used.

The transformer may also be immersed in transformer oil that provides further to the insulation. The oil is primarily used to cool the transformer. By cooling the windings, the insulation will not break down as easy due to heat. To ensure that the insulating capability of the transformer oil does not deteriorate, the transformer casing is completely sealed against moisture ingress. Thus the oil serves as both a cooling medium to remove heat from the core and coil, and as part of the insulation system.

Certain power transformers have the windings protected by a layer of epoxy resin. This produces transformers suitable for damp or dirty environments, but at increased manufacturing cost.

[édit] Shielding

Where transformers are intended for minimum electrostatic coupling between primary and secondary circuits, an electrostatic shield can be placed between windings to reduce the capacitance between primary and secondary windings. The shield may be a single layer of metal foil, insulated where it overlaps to prevent it acting as a shorted turn, or a single layer winding between primary and secondary. The shield is connected to earth ground.

Transformers may also be enclosed by magnetic shields, electrostatic shields, or both to prevent outside interference from affecting the operation of the transformer, or to prevent the transformer from affecting the operation of other devices (such as CRTs near the transformer).

[édit] Paniis

Gambar:Transformer 01.jpg

Three phase dry-type transformer with cover removed; rated about 200 KVA, 480 V.

Small signal transformers do not generate significant amounts of heat. Power transformers rated up to a few kilowatts rely on natural convective air cooling. Specific provision must be made for cooling of high-power transformers. Transformers handling higher power, or having a high duty cycle can be fan-cooled.

Some dry transformers are enclosed in pressurized tanks and are cooled by nitrogen or sulfur hexafluoride gas.

The windings of high-power or high-voltage transformers are immersed in transformer oil — a highly-refined mineral oil, that is stable at high temperatures. Large transformers to be used indoors must use a non-flammable liquid. Formerly, polychlorinated biphenyl (PCB) was used as it was not a fire hazard in indoor power transformers and it is highly stable. Due to the stability and toxic effects of PCB byproducts, and its environmental accumulation, it is no longer permitted in new equipment. Old transformers which still contain PCB should be examined on a weekly basis for leakage. If found to be leaking, it should be changed out, and the the old one professionally discarded. Today, nontoxic, stable silicone-based oils, or fluorinated hydrocarbons may be used where the expense of a fire-resistant liquid offsets additional building cost for a transformer vault. Other less-flammable fluids such as canola oil may be used but all fire resistant fluids have some drawbacks in performance, cost, or toxicity compared with mineral oil.

The oil cools the transformer, and provides part of the electrical insulation between internal live parts. It has to be stable at high temperatures so that a small short or arc will not cause a breakdown or fire. The oil-filled tank may have radiators through which the oil circulates by natural convection. Very large or high-power transformers (with capacities of millions of watts) may have cooling fans, oil pumps and even oil to water heat exchangers. Oil-filled transformers undergo prolonged drying processes, using vapor-phase heat transfer, electrical self-heating, the application of a vacuum, or combinations of these, to ensure that the transformer is completely free of water vapor before the cooling oil is introduced. This helps prevent electrical breakdown under load.

Oil-filled power transformers may be equipped with Buchholz relays which are safety devices that sense gas build-up inside the transformer (a side effect of an electric arc inside the windings), and thus switches off the transformer.

Experimental power transformers in the 2 MVA range have been built with superconducting windings which eliminates the copper losses, but not the core steel loss. These are cooled by liquid nitrogen or helium.

[édit] Terminal

Very small transformers will have wire leads connected directly to the ends of the coils, and brought out to the base of the unit for circuit connections. Larger transformers may have heavy bolted terminals, bus bars or high-voltage insulated bushings made of polymers or porcelain. A large bushing can be a complex structure since it must provide electrical insulation without letting the transformer leak oil.

[édit] Lampiran

Small transformers often have no enclosure. Transformers may have a shield enclosure, as described above. Larger units may be enclosed to prevent contact with live parts, and to contain the cooling medium (oil or pressurized gas).

[édit] Tipe trafo

[édit] Autotrafo
Artikel utama: Autotrafo

An autotransformer has only a single winding, which is tapped at some point along the winding. AC or pulsed voltage is applied across a portion of the winding, and a higher (or lower) voltage is produced across another portion of the same winding. While theoretically separate parts of the winding can be used for input and output, in practice the higher voltage will be connected to the ends of the winding, and the lower voltage from one end to a tap. For example, a transformer with a tap at the center of the winding can be used with 230 volts across the entire winding, and 115 volts between one end and the tap. It can be connected to a 230 volt supply to drive 115 volt equipment, or reversed to drive 230 volt equipment from 115 volts. As the same winding is used for input and output, the flux in the core is partially cancelled, and a smaller core can be used. For voltage ratios not exceeding about 3:1, an autotransformer is cheaper, lighter, smaller and more efficient than a true (two-winding) transformer of the same rating.

In practice, transformer losses mean that autotransformers are not perfectly reversible; one designed for stepping down a voltage will deliver slightly less voltage than required if used to step up. The difference is usually slight enough to allow reversal where the actual voltage level is not critical.

By exposing part of the winding coils and making the secondary connection through a sliding brush, an autotransformer with a near-continuously variable turns ratio can be obtained, allowing for very small increments of voltage.

Transformers in a tube amplifier. Output transformers are on the left. The power supply toroidal transformer is on right.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

No comments: