Bewise Inc. www.tool-tool.com Reference source from the internet.
ترانسفورماتور (Transformer) وسیلهای است که انرژی الکتریکی را به وسیله دو یا چند سیمپیچ و از طریق القای الکتریکی از یک مدار به مداری دیگر منتقل میکند. به این صورت که جریان جاری در مدار اول (اولیه ترانسفورماتور) موجب به وجود آمدن یک میدان مغناطیسی در اطراف سیمپیچ اول میشود, این میدان مغناطیسی به نوبه خود موجب به وجود آمدن یک ولتاژ در مدار دوم میشود که با اضافه کردن یک بار به مدار دوم این ولتاژ میتواند به ایجاد یک جریان در ثانویه بینجامد.
ولتاژ القا شده در ثانویه VS و ولتاژ دو سر سیمپیچ اولیه VP دارای یک نسبت با یکدیگرند که به طور ایدهآل برابر نسبت تعداد دور سیم پیچ ثانویه به سیمپیچ اولیه است:
به این ترتیب با اختصاص دادن امکان تنظیم تعداد سیمپیچهای ترانسفورماتور, میتوان امکان تغییر ولتاژ در ثانویه ترانس را فراهم کرد.
یکی از کاربردهای بسیار مهم ترانسفورماتورهای کاهش جریان پیش از خطوط انتقال انرژی الکتریکی است. دلیل استفاده از ترانسفورماتور در ابتدای خطوط این است که همه هادیهای الکتریکی دارای میزان مشخصی مقاومت الکتریکی هستند, این مقاومت میتواند موجب اتلاف انرژی در طول مسیر انتقال انرژی الکتریکی شود. میزان تلفات در یک هادی با مجذور جریان عبوری از هادی رابطه مستقیم دارد و بنابر این با کاهش جریان میتوان تلفات را به شدت کاهش داد. با افزایش ولتاژ در خطوط انتقال به همان نسبت جریان خطوط کاهش مییابد و به این ترتیب هزینههای انتقال انرژی نیز کاهش مییابد, البته با نزدیک شدن خطوط انتقال به مراکز مصرف برای بالا بردن ایمنی ولتاژ خطوط در چند مرحله و باز به وسیله ترانسفورماتورها کاهش مییابد تا به میزان استاندارد مصرف برسد. به این ترتیب بدون استفاده از ترانسفورماتورها امکان استفاده از منابع دوردست انرژی فراهم نمیآمد.
ترانسفورماتورها یکی از پرراندمانترین تجهیزات الکتریکی هستند به طوری که در برخی ترانسفورماتورهای بزرگ راندمان به 99.75٪ نیز میرسد. امروزه از ترانسفورماتورها در اندازهها و توانهای مختلفی استفاده میشود از یک ترانسفورماتور بند انگشتی که در یک میکروفن قرار دارد تا ترانسفورماتورهای غولپیکر چند گیگا ولت-آمپری. همه این ترانسفورماتورها اصول کار یکسانی دارند اما در طراحی و ساخت متفاوت هستند.
شکل-1 یک ترانسفورماتور توزیع بر روی یک تیر.
فهرست مندرجات
[نهفتن]- ۱ اصول پایه
- ۲ ملاحظات عملی
- ۳ تلفات انرژی
- ۴ مدار معادل
- ۵ انواع
- ۶ طبقهبندی
- ۷ ساختمان
- ۸ جستارهای وابسته
- ۹ منابع
[ویرایش] اصول پایه
به طور کلی یک ترانسفورماتور بر دو اصل استوار است:
- اول اینکه, جریان الکتریکی میتواند یک میدان مغناطیسی پدید آورد (الکترومغناطیس)
- و دوم اینکه, یک میدان الکتریکی متغییر در داخل یک حلقه سیمپیچ میتواند موجب به وجود آمدن یک ولتاژ در دو سر سیمپیچ شود.
سادهترین طراحی برای یک ترانسفورماتور در شکل 2 آمده است. جریان جاری در سیمپیچ اولیه موجب به وجود آمدن یک میدان مغناطیسی میگردد. هر دو سیمپیچ اولیه و ثانویه بر روی یک هسته که دارای خاصیت نفوذپذیری مغناطیسی بالایی است (مانند آهن) پیچیده شدهاند. بالا بودن نفوذپذیری هسته موجب میشود تا بیشتر میدان تولید شده توسط سیمپیچ اولیه از داخل هسته عبور کرده و به سیمپیچ ثانویه برسد.
[ویرایش] قانون القا
میزان ولتاژ القا شده در سیمپیچ ثانویه را میتوان به وسیله قانون فاراده به دست آورد:
در فرمول بالا VS ولتاژ لحظهای, NS تعداد دورهای سیمپیچ در ثانویه و Φ برابر مجموع شار مغناطیسی است که از یک دور از سیمپیچ میگذرد. با توجه به این فرمول تا زمانی که شار در حال تغییر از دو سیم پیچ اولیه و ثانویه عبور کند ولتاژ لحظهای در اولیه یک ترانسفورماتور ایدهآل از فرمول زیر بدست میآید:
و با توجه به تعداد دور سیمپیچهای اولیه و ثانویه و این معادله ساده میتوان میزان ولتاژ القایی در ثانویه را بدست آورد:
شکل-2 یک ترانسفورماتور کاهنده ایدهآل و مسیر عبور شار در هسته
[ویرایش] معادله ایدهال توان
اگر سیمپیچ ثانویه به یک بار متصل شده باشد جریان در سیمپیچ ثانویه جاری خواهد شد و به این ترتیب توان الکتریکی بین دو سیمپیچ منتقل میشود. به طور ایدهآل ترانسفورماتور باید کاملاً بدون تلفات کار کند و تمام توانی که به ورودی وارد میشود به خروجی برسد وبه این ترتیب توان ورودی و خروجی باید برابر باشد و در این حالت داریم:
- Pincoming = IPVP = Poutgoing = ISVS
و همچنین در حالت ایدهآل خواهیم داشت:
بنابر این اگر ولتاژ ثانویه از اولیه بزرگتر باشد جریان ثانویه باید بههمان نسبت از جریان اولیه کوچکتر باشد. همانطور که در بالا اشاره شد در واقع بیشتر ترانسفورماتورها راندمان بسیار بالایی دارند و به این ترتیب نتایج به دست آمده از این معادلات به مقادیر واقعی بسیار نزدیک خواهد بود.
[ویرایش] مبحث فنی
تعاریف ساده شده بالا از بسیاری از مباحث پیچیده درباره ترانسفورماتورها گذشته است.
در یک ترانسفورماتور ایدهآل, ترانسفورماتور دارای یک هسته بدون مقاومت مغناطیسی و دو سیمپیچ بدون مقاومت الکتریکی است. زمانی که ولتاژ به ورودیهای اولیه ترانسفورماتور اعمال میشود برای به وجود آمدن شار در مدار مغناطیسی هسته, جریانی کوچکی در سیمپیچ اولیه جاری میشود. از آنجایی که در ترانسفورماتور ایدهآل هسته فاقد مقاومت مغناطیسی است این جریان قابل چشم پوشی خواهد بود در حالی که در یک ترانسفورماتور واقعی این جریان بخشی از تلفات ترانسفورماتور را تشکیل خواهد داد.
[ویرایش] ملاحظات عملی
[ویرایش] شار پراکندگی
در یک ترانسفورماتور ایدهآل شار مغناطیسی تولید توسط سیمپیچ اول به طور کامل توسط سیمپیچ دوم جذب میشود اما در واقع بخشی از شار مغناطیسی در فضای اطراف پراکنده میشود. به شاری که در حین انتقال از مسیر خود جدا میشود شار پراکندگی (leakage flux) میگویند. این شار پراکندگی موجب به وجود آمده اثر خود القا در سیمپیچها میشود و به این ترتیب موجب میشود که در هر سیکل, انرژی در سیمپیچ ذخیره شده و در نیمه پایانی سیکل آزاد شود. این اثر به طور مستقیم باعث ایجاد افت توان نخواهد شد اما به دلیل ایجاد اختلاف فاز موجب ایجاد مشکلاتی در تنظیم ولتاژ خواهد شد و به این ترتیب باعث خواهد شد تا ولتاژ ثانویه دقیقاً نسبت واقعی خود با ولتاژ اولیه حفظ نکند؛ این اثر به ویژه در بارهای بزرگ خود را نشان خواهد داد. به همین دلیل ترانسفورماتورهای توزیع طوری ساخته میشوند تا کمترین میزان تلفات پراکندگی را داشته باشند.
با این حال در برخی کاربردها, وجود تلفات پراکندگی بالا پسندیده است. در این ترانسفورماتورها با استفاده از روشهایی مانند ایجاد مسیرهای مغناطیسی طولانی, شکافهای هوایی یا مسیرهای فرعی مغناطیسی اقدام به افزایش شار پراکندگی میکنند. دلیل افزایش عمدی تلفات پراکندگی در این ترانسفورماتورها قابلیت بالای این نوع ترانسفورماتورها در تحمل اتصال کوتاه است. از این گونه ترانسفورماتورها برای تغذیه بارهای دارای مقاومت منفی مانند دستگاههای جوش (یا دیگر تجهیزات استفاده کننده از قوس الکتریکی), لامپهای بخار جیوه و تابلوهای نئون یا ایجاد ایمنی در بارهایی که احتمال بروز اتصال کوتاه در آنها زیاد است استفاده میشود.
[ویرایش] تاثیر فرکانس
مشتق زمان در قانون فاراده نشان میدهد که شار در یک سیمپیچ, برابر انتگرال ولتاژ ورودی است. در یک ترانسفورماتور ایدهآل افزایش شار در سیمپیچ به طور خطی در نظر گرفته میشود اما در عمل شار مغناطیسی با سرعت نسبتا زیاد افزایش پیدا میکند این افزایش تا جایی ادامه دارد که شار به نقطه اشباع مغناطیسی هسته میرسد. به خاطر افزایش ناگهانی جریان مغناطیس کننده در یک ترانسفورماتور واقعی, همه ترانسفورماتورها باید همیشه با جریان متناوب سینوسی (نه پالسی) تغذیه شوند.
معادله عمومی EMF برای ترانسفورماتورها اگر شار مغناطیسی را سینوسی در نظر بگیریم رابطه بین ولتاژ E, فرکانس منبع f, تعداد دور N, سطح مقطع هسته A و ماکزیمم چگالی مغناطیسی B از رابطه عمومی EMF و به صورت زیر به دست میآید:
برای یک ترانسفورماتور در چگالی مغناطیسی ثابت, EMF با افزایش فرکانس افزایش مییابد که تاثیر آن را میتوان از معادله عمومی EMF محاسبه کرد. بنابراین با استفاده از ترانسفورماتورها در فرکانس بالاتر میتوان بهرهوری آنها را نسبت به وزنشان افزایش داد چراکه یک ترانسفورماتور با حجم هسته ثابت در فرکانس بالاتر میتواند میزان توان بیشتری را بین سیمپیچها جابجا کند و تعداد دور سیمپیچ کمتری نیز برای ایجاد یک امپدانس ثابت نیاز خواهد بود. با این حال افزایش فرکانس میتواند موجب به وجود آمدن تلفات مضایف مانند تلفات هسته و اثر سطحی در سیستم شود. در هواپیماها و برخی تجهیزات نظامی از فرکانس 400 هرتز استفاده میشود چراکه با این کار گذشته از افزایش برخی تلفات میتوان حجم تجهیزات را کاهش داد.
به طور کلی استفاده از یک ترانسفورماتور در ولتاژ نامی ولی فرکانس بیش از نامی موجب کاهش جریان مغناطیس کننده میشود و به این ترتیب در فرکانسی کمتر از فرکانس نامی جریان مغناطیس کننده میتواند در حد زیادی افزایش یابد. البته استفاده از ترانسفورماتورها در فرکانسهای بیشتر یا کمتر از فرکانس نامی باید قبل از اقدام, مورد ارزیابی قرار گیرد تا شرایط ایمن برای کار ترانس مثل سنجش ولتاژها, تلفات و استفاده از سیستم خنککننده خاص بررسی شود. برای مثال ترانسفورماتورها باید به وسیله رلههای ولتاژ به ازای فرکانس مجهز شوند تا در مقابل اضافه ولتاژهای ناشی از افزایش فرکانس محافظت شوند.
[ویرایش] تلفات انرژی
یک ترانسفورماتور ایدهآل هیچ تلفاتی نخواهد داشت و در واقع راندمانی برابر 100٪ دارد. با این حال ترانسفورماتورهای واقعی نیز جزو بهرهورترین تجهیزات الکتریکی محسوب میشود به طوری که نمونههای آزمایشی ترانسفورماتورهایی که با بهرگیری از ابر رسانا ساخته شدهاند به راندمانی برابر 99.85٪ دست یافتهاند. به طور کلی ترانسفورماتورهای بزرگتر از راندمان بالاتری برخوردارند و ترانسفورماتورهایی که برای مصارف توزیعی مورد استفاده قرار میگیرند از راندمانی در حدود 95٪ برخوردارند در حالی که ترانسفورماتورهای کوچک مانند ترانسفورماتورهای موجود در اداپتورها راندمانی در حدود 85٪ دارند. تلفات به وجود آمده در ترانسفورماتور با توجه به عوامل به وجود آورنده یا محل اتلاف انرژی به این صورت طبقه بندی میشوند:
[ویرایش] مقاومت سیمپیچها
جریانی که در یک هادی جاری میشود با توجه به میزان مقاومت الکتریکی هادی میتواند موجب به وجود آمدن حرارت در محل عبور جریان شود. در فرکانسهای بالاتر اثر سطحی و اثر مجاورت نیز میتوانند تلفات مضایفی را در ترانسفورماتور به وجود آورند.
[ویرایش] تلفات پسماند (هیسترزیس)
هر بار که جهت جریان الکتریکی بهخاطر وجود فرکانس عوض میشود با توجه به جنس هسته, مقدار کمی انرژی در هسته باقی میماند. به این ترتیب برای یک هسته با جنس ثابت این نوع تلفات با میزان فرکانس تناسب دارد و با افزایش فرکانس تلفات پسماند هسته نیز افزایش مییابد.
[ویرایش] جریان گردابی
شکل-3 یک ترانسفورماتور ایدهآل به عنوان المانی در مدار
مواد فرومغناطیس معمولا هادیهای الکتریکی خوبی نیز هستند و بنابراین هسته ترانسفورماتورمیتواند مانند یک مدار اتصال کوتاه شده عمل کند. بنابراین حتی با القای میزان کمی ولتاژ, جریان در هسته به شدت بالا میرود. این جریان جاری در هسته گذشته از به وجود آوردن تلفات الکتریکی موجب به وجود آمدن حرارت در هسته نیز میشود. جریان گردابی در هسته با مجذور فرکانس منبع رابطه مستقیم و با مجذور ضخامت ورق هسته رابطه معکوس دارد. برای کاهش تلفات گردابی در هسته, هستهها را ورقه ورقه کرده و آنها را نسبت به یکدیگر عایق میکنند.
[ویرایش] تغییر شکل بر اثر مغناطیس
شار مغناطیسی در یک ماده فرومغناطیس موجب حرکت نسبی ورقههای هادی نسبت به یکدیگر میشود. در صورت محکم نبودن این ورقهها این اثر میتواند موجب ایجاد صدایی شبیه وز وز در هنگام کار کردن ترانسفورماتور شود به این اثر تغییر شکل بر اثر میدان مغناطیسی یا Magnetostriction میگویند. این اثر میتواند موجب به وجود آمدن گرما در اثر اصطکاک بین صفحات نیز شود.
[ویرایش] تلفات مکانیکی
به دلیل وجود تغییر شکل بر اثر مغناطیس در یک ترانسفورماتور بین قطعات ترانسفورماتور نوعی حرکت به وجود میآید این تحرک نیز به نوبه خود موجب به وجود آمدن تلفات مکانیکی در ترانسفورماتورخواهد شد. در صورتی که قطعات موجود در ترانسفورماتور به خوبی در جای خود محکم نشده باشند, تحرکات مکانیکی آنها نیز افزایش یافته و در نتیجه تلفات مکانیکی نیز افزایش خواهد یافت.
شکل-4 مدار معادل یک تراسنفورماتور
[ویرایش] مدار معادل
محدودیتهای فیزیکی یک ترانسفورماتور واقعی به صورت یک مدار نمایش داده میشوند. این مدار معادل از تعدادی از عوامل به وجود آورنده تلفات یا محدودیتها و یک ترانسفورماتور ایدهآل تشکیل شده است. تلفات توان در سیمپیچ یک ترانسفورماتور به طور خطی تابعی از جریان هستند و به راحتی میتواند آنها را به صورت مقاومتهایی سری با سیمپیچهای ترانسفورماتور نمایش داده شود؛ این مقاومتها RS و RP هستند. با بررسی خواص شار پراکندگی میتوان آن را به صورت خود القاهای XP و XS نشان داد که به صورت سری با سیمپیچ ایدهآل قرار میگیرند. تلفات آهنی از دو نوع تلفات گردابی (فوکو) و پسماند (هیسترزیس) تشکیل شده. در فرکانس ثابت این تلفات با مجذور شار هسته نسبت مستقیم دارند و از آنجایی که شار هسته نیز تقریباً با ولتاژ ورودی نسبت مستقیم دارد این تلفات را میتوان به صورت مقاومتی موازی با مدار ترانسفورماتور نشان داد. این مقاومت همان RC است.
هستهایی با نفوذپذیری محدود نیازمند جریان IM خواهد بود تا همچنان شار مغناطیسی را در هسته برقرار کند. بنابراین تغییرات در جریان مغناطیس کننده با تغییرات در شار مغناطیسی هم فاز خواهد بود و به دلیل اشباع پذیر بودن هسته, رابطه بین این دو خطی نخواهد بود. با این حال برای ساده کردن این تاثیرات در بیشتر مدارهای معادل این رابطه خطی در نظر گرفته میشود. در منابع سینوسی شار مغناطیسی 90 درجه از ولتاژ القایی عقبتر خواهد بود, بنابراین این اثر را میتوان با القاگر XM در مدار نشان داد که به طور موازی با تلفات آهنی هسته RC قرار میگیرد. RC و XM را در برخی موارد با هم به صورت یک شاخه در نظر میگیرند و آن را شاخه مغناطیس کننده مینامند. اگر سیمپیچ ثانویه ترانسفورماتور را مدار باز کنیم تمامی جریان عبوری از اولیه ترانسفورماتور جریان I0 خواهد بود که از شاخه مغناطیس کننده عبور خواهد کرد این جریان را جریان بیباری نیز مینامند.
مقاومتهای موجود در طرف ثانویه یعنی RS و XS نیز باید به طرف اولیه منتقل شوند. این مقاومتها در واقع معادل تلفات مسی و پراکندگی در طرف ثانویه هستند و به صورت سری با سیم پیچ ثانویه قرار میگیرند.
مدار معادل حاصل را مدار معادل دقیق مینامند گرچه در این مدار معادل نیز از برخی ملاحضات پیچیده مانند اثرات غیرخطی چشم پوشی میکند.
[ویرایش] انواع
ساخت انواع مختلف ترانسفورماتورها به منظور رفع اهداف استفاده از آنها در کاربردهای متفاوت میباشد. در این میان برخی از انواع ترانسفورماتورها بیشتر مورد استفاده قرار میگیرند که میتوان به نمونهها زیر اشاره کرد:
[ویرایش] اتوترانسفورماتور
اتوترانسفورماتور به ترانسفورماتوری گفته میشود که تنها از یک سیمپیچ تشکیل شده است. این سیمپیچ دارای دو سر ورودی و خروجی و یک سر در میان است. به طوری که میتوان گفت سیمپیچ کوتاهتر(که در ترنس کاهنده سیمپیچ ثانویه محسوب میشود) قسمتی از سیمپیچ بلندتر است. در این گونه ترانسفورماتورها تا زمانی که نسبت ولتاژ-دور در دو سیمپیچ برابر باشد ولتاژ خروجی از نسبت سیمپیچ تعداد دور سیمپیچها به ولتاژ ورودی به دست میآید.
با قرار دادن یک تیغه لغزان به جای سر وسط ترانس, میتوان نسبت سیمپیچهای اولیه و ثانویه را تا حدودی تغییر داد و به این ترتیب ولتاژ پایانه خروجی ترانسفورماتور را تغییر داد. مزیت استفاده از اتوترانسفورماتور کم هزینه تر بودن آن است چراکه به جای استفاده از دو سیمپیچ تنها از یک سیمپیچ در آنها استفاده میشود.
[ویرایش] ترانسفورماتور چند فازه
برای تغذیه بارهای سه فاز میتوان از سه ترانسفورماتور جداگانه استفاده کرد یا آنکه از یک ترانسفورماتور سه فاز استفاده کرد. در یک ترانسفورماتور سه فاز مدارهای مغناطیسی با هم مرتبط هستند و بنابر این هسته دارای شار مغناطیسی در سه فاز متفاوت است. برای چنین هستههایی میتوان از چندین شکل مختلف برای هسته استفاده کرد که این شکلهای مختلف هر یک دارای مزایا و معایبی هستند و در مواردی خاص کاربرد دارند.
[ویرایش] طبقهبندی
به دلیل وجود کاربردهای متفاوت برای ترانسفورماتورها, آنها ار بر حسب پارامترهای متفاوتی طبقهبندی میکنند:
- بر حسب رده توان: از کسری از ولت-آمپر تا بیش از هزار مگا ولت-آمپر.
- بر حسب محدوده فرکانس: فرکانس قدرت, فرکانس صوتی, فرکانس رادئویی
- بر حسب رده ولتاژ: از چند ولت تا چند صد کیلوولت
- بر حسب نوع خنک کنندگی: خنک کننده هوا, روغنی, خنک کنندگی با فن, خنک کنندگی آب.
- بر حسب نوع کاربرد: منبع تغذیه, تطبیق امپدانس, تثبیت کننده ولتاز و جریان خروجی یا ایزوله کردن مدار.
- برحسب هدف نهایی کاربرد: توزیع, یکسوسازی, ایجاد قوس الکتریکی, ایجاد تقویت کننده.
- بر حسب نسبت سیمپیچها: افزاینده, کاهنده, ایزوله کننده (با نسبت تقریبا یکسان در دوسیمپیچ), متغیر.
[ویرایش] ساختمان
[ویرایش] هسته
[ویرایش] هسته لایه لایه شده
لایه لایه کردن هسته ترانس جریان گردابی را به شدت کاهش میدهد.
ترانسفورماتورها مورد استفاده در کاربردهای قدرت یا فرکانس رادئویی معمولا از هسته با جنس فولاد سیلیکاتی با قابلیت نفوذپذیری مغناطیسی بالا استفاده میکنند. قابلیت نفوذپذیری مغناطیسی در فولاد بارها بیشتر از نفوذپذیری در خلا است و به این ترتیب با استفاده از هستههای فولادی جریان مغناطیس کننده مورد نیاز برای هسته به شدت کاهش مییابد و شار در مسیری کاملا نیزدیک به سیمپیچها محبوس میشود. سازندگان ترانسفورماتورهای اولیه به سرعت متوجه این موضوع شدند که استفاده از هسته یک پارچه باعث افزایش تلفات گردابی در هسته ترانسفورماتور میشود و در طراحیهای خود از هستههایی استفاده کردند که از دستههای عایق شده آهن تولید شده بود. در طراحیهایی بعدی با استفاده از ورقهای نازک آهن که نسبت به یکدیگر عایق شده بودند, تلفات در ترانسفورماتور باز هم کاهش یافت. از این روش در ساخت هسته امروزه نیز استفاده میشود. همچنین با استفاده از معادله عمومی ترانسفورماتور میتوان نتیجه گرفت که کمترین سطح اشباع در هسته با سطح مقطع کوچکتر ایجاد میشود.
گرچه استفاده از هستههای با لایههای نازکتر تلفات را کاهش میدهد, اما از طرفی هزینه ساخت ترانسفورماتور را افزایش میدهد. بنابراین از هستههای با لایههای نازک معمولا در فرکانسذهای بالا استفاده میشود. با استفاده از برخی انواع هستههای با لایههای بسیار نازک امکان ساخت ترانسفورماتورهای تا 10 کیلوهرتز پدید میآید.
نوعی متداول از هستههای لایه لایه, از قطعاتی E شکل که با قطعاتی I شکل یک هسته را به وجود میآورند تشکیل شده. این هستهها را هستههای E-I مینامند. این هستهها گرچه تلفات را افزایش میدهند اما به علت آسانی مونتاژ, هزینه ساخت هسته را کاهش میدهند. نوع دیگری از هستهها, هستههای C شکل هستند. این هسته از قرار دادن دو قطعه C شکل در مقابل یکدیگر تشکیل میشود. این هستهها این مزیت را دارند که تمایل شار برای عبور از هر قطعه از هسته برابر است و این مزیت باعث کاهش یافتن مقاومت مغناطیسی میشود.
پسماند در یک هسته فولادی به معنای باقی ماندن خاصیت مغناطیسی در هسته پس از قطع شدن توان الکتریکی است. زمانی که جریان دوباره در هسته جاری میشود این پسماند باقی مانده در هسته تا زمانی که کاهش یابد موجب به وجود آمدن یک جریان هجومی در ترانس میشود. تجهیزات حفاظتی مانند فیوزها باید طوری انتخاب شوند که به این جریان هجومی اجازه عبود دهند.
ترانسفورماتورهای توزیع میتوانند با استفاده از هستههای با قابلیت نفوذ پذیری مغناطیسی بالا تلفات بی باری را کاهش دهند. هزینه اولیه هسته بعدها با صرفهجویی که در مصرف انرژی و افزایش طول امر ترانس میشود جبران خواهد شد.
[ویرایش] هستههای یکپارچه
هستههایی که از آهن پودر شده ساخته شدند در مدارهایی که با فرکانس بالاتر از فرکانس شبکه تا چند ده کیلوهرتز کار میکنند کاربرد دارند. این هسته دارای قابلیت نفوذ پذیری مغناطیسی بالا و همچنین مقاومت الکتریکی بالا هستند. برای فرکانسهایی بالاتر از باند VHF از هستههای غیر رسانای فریت استفاده میشود. برخی از ترانسفورماتورهای فرکانس رادیویی از هستههای متحرک استفاده میکنند که این امکان را به وجود میآورد که ضریب اتصال هسته قابل تغییر باشد.
[ویرایش] هستههای حلقوی
ترانسفورماتور هسته حلقوی کوچک
ترانسفورماتورهای حلقوی دور حلقه ای ساخته می شوند.جنس این هسته بسته به فرکانس مورد استفاده ممکن است از نوارهای بلند فولاد سیلیکاتی، پرمالوی پیچیده شده دور یک چنبره،آهن تقویت شده یا فریت باشد.ساختار نواری باعث چینش بهینه مرز_دانه ها می شود که این امر با کاهش رلوکتانس هسته موجب افزایش بهره وری ترنسفورماتور می گردد.شکل حلقوی بسته باعث از بین رفتن فاصله هوایی در هسته هایی با ساختار E-I می شود.سطح مقطع حلقه عموما به صورت مربعی یا مستطیلی می باشند،البته هسته هایی با سطح مقطع دایروی با قیمت بالا نیز وجود دارند. سیم پیچیهای اولیه و ثانویه به صورت فشرده پیچیده می شوند و تمام سطح حلقه را می پوشانند. با این کار می توان طول سیم مورد نیاز را به حداقل رساند. در توانهای برابر ترانسفورماتورهای حلقوی از انواع E-I -که ارزانتر میباشند- راندمان بیشتری دارند.دیگر مزایای ترانسفورماتورهای حلقوی به قرار زیرند:اندازه کوچکتر (در حدود نصف)، وزن کمتر(در حدود نصف)، اغتشاش (صدای هوم) پائین(ایده آل برای استفاده در تقویت کننده های صوتی)، میدان مغناطیسی کمتر(در حدود یک دهم)، تلفات بی باری پائین( مناسب برای مدارها در حالت آماده بکار-standby-). از معایب آنها به قیمت بیشتر و توان نامی محدود می توان اشاره کرد. در فرکانسهای بالا هسته های حلقوی فریت مورد استفاده قرار می گیرند. فریت قابلیت کار در فرکانسهای چند ده کیلوهرتز تا یک مگا هرتز را دارا میباشد. با بکارگیری فریت تلفات، اندازه فیزیکی، و وزن منابع نیروی سوئیچ مد کاهش می یابد. ایراد دیگر ترانسفورماتور های حلقوی هزینه بالای سیم پیچی در آنهاست. در نتیجه آنها در توان های نامی بیشتر از چند کیلوولت آمپر کاربرد بسیار کمی دارند.
歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具、協助客戶設計刀具流程、DIN or JIS 鎢鋼切削刀具設計、NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計、超高硬度的切削刀具、醫療配件刀具設計、複合式再研磨機、PCD地板專用企口鑽石組合刀具、NSK高數主軸與馬達、專業模具修補工具-氣動與電動、粉末造粒成型機、主機版專用頂級電桿、PCD V-Cut刀、捨棄式圓鋸片組、粉末成型機、主機版專用頂級電感、’汽車業刀具設計、電子產業鑽石刀具、木工產業鑽石刀具、銑刀與切斷複合再研磨機、銑刀與鑽頭複合再研磨機、銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!
BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS DIN Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、NAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill、disc milling cutter,Aerospace cutting tool、hss drill’Фрезеры’Carbide drill、High speed steel、Compound Sharpener’Milling cutter、INDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’POWDER FORMING MACHINE’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、Staple Cutter’PCD diamond cutter specialized in grooving floors’V-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert’ PCD Diamond Tool’ Saw Blade with Indexable Insert’NAS tool、DIN or JIS tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills’end mill grinder’drill grinder’sharpener、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.
ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな
情報を受け取って頂き、もっと各産業に競争力プラス展開。
弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、
豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。
弊社は各領域に供給できる内容は:
(3)鎢鋼エンド・ミル設計
(4)航空エンド・ミル設計
(5)超高硬度エンド・ミル
(7)医療用品エンド・ミル設計
弊社の製品の供給調達機能は:
(4)オートメーション整備調達
弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。
Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.
BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.
BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.
No comments:
Post a Comment