Thursday, March 26, 2009

Ελληνικά Μετασχηματιστής www.tool-tool.com

Bewise Inc. www.tool-tool.com Reference source from the internet.

Τριφασικός μετασχηματιστής υποβιβασμού τάσης, αναρτημένος σε στύλο

Ο μετασχηματιστής είναι μια συσκευή η οποία μεταφέρει ηλεκτρική ενέργεια μεταξύ δύο κυκλωμάτων, διαμέσου επαγωγικά συζευγμένων ηλεκτρικών αγωγών. Οι μετασχηματιστές είναι ανάμεσα στις πιο αποδοτικές ηλεκτρικές μηχανές,[1] με κάποιες μεγάλες μονάδες να αποδίδουν έως και το 99.75% της ισχύος εισόδου τους στην έξοδό τους.[2] Οι μετασχηματιστές κατασκευάζονται σε ευρεία γκάμα μεγεθών, που κυμαίνονται από μέγεθος νυχιού (όπως αυτοί που βρίσκονται μέσα σε ένα μικρόφωνο) έως τεράστιες μονάδες με βάρος εκατοντάδων τόνων που χρησιμοποιούνται για τη διασύνδεση τμημάτων των εθνικών δικτύων ηλεκτροδότησης. Όλοι λειτουργούν με βάση τις ίδιες αρχές, αν και υπάρχει πληθώρα διαφορετικών υλοποιήσεων.

Ένα μεταβαλλόμενο ηλεκτρικό ρεύμα στο πρώτο κύκλωμα (το "πρωτεύον") δημιουργεί ένα μεταβαλλόμενο μαγνητικό πεδίο. Αυτό το μεταβαλλόμενο μαγνητικό πεδίο επάγει μεταβαλλόμενη τάση στο δεύτερο κύκλωμα (το "δευτερεύον"). Το φαινόμενο αυτό καλείται αμοιβαία επαγωγή.

Αν ένας ηλεκτρικός καταναλωτής[3] είναι συνδεδεμένος στο δευτερεύον κύκλωμα, τότε θα υπάρξει ροή ηλεκτρικού φορτίου στο δευτερεύον τύλιγμα του μετασχηματιστή. Αυτό το φορτίο θα μεταφέρει ενέργεια από το πρωτεύον κύκλωμα, στον καταναλωτή που είναι συνδεδεμένος στο δευτερεύον κύκλωμα.

Η επαγόμενη τάση VS στο δευτερεύον ενός ιδανικού μετασχηματιστή, είναι ανάλογη της τάσης VP στο πρωτεύον κατά ένα συντελεστή ίσο με το λόγο του αριθμού Ν των περιελίξεων του σύρματος στα αντίστοιχα τυλίγματα:

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

Οι δείκτες S,P προέρχονται από τις αγγλικές λέξεις secondary, primary, οι οποίες σημαίνουν αντίστοιχα δευτερεύον και πρωτεύον.

Με κατάλληλη επιλογή του αριθμού των περιελίξεων, ένας μετασχηματιστής επιτρέπει την ανύψωση μιας εναλλασσόμενης τάσης (αν NS > NP) ή τον υποβιβασμό της (αν NS <>P).

[Επεξεργασία] Ιστορία

Η αρχή λειτουργίας του μετασχηματιστή διατυπώθηκε το 1831 από τον Μάικλ Φαραντέι, αν και την χρησιμοποίησε μόνο για επίδειξη των αρχών της ηλεκτρομαγνητικής επαγωγής, χωρίς να προβλέψει την πρακτική της σημασία. Ο πρώτος μετασχηματιστής σε ευρεία χρήση ήταν το πηνίο επαγωγής, το οποίο εφηύρε ο Ιρλανδός κληρικός Νίκολας Κάλαν το 1836.[4] Ήταν ένας από τους πρώτους που κατάλαβαν την αρχή πως όσο περισσότερες περιελίξεις έχει το τύλιγμα ενός μετασχηματιστή, τόσο μεγαλύτερη ηλεκτρεγερτική δύναμη παράγει. Τα πηνία επαγωγής δημιουργήθηκαν από τις προσπάθειες των επιστημόνων για παροχή υψηλότερων τάσεων από μπαταρίες. Δεν τροφοδοτούνταν από εναλλασσόμενο ρεύμα, αλλά από συνεχές, προερχόμενο από μπαταρίες, το οποίο διακόπτονταν από ένα δονούμενο διακοπτικό μηχανισμό. Μεταξύ 1830-1870 οι προσπάθειες για δημιουργία καλύτερων επαγωγικών πηνίων, κυρίως με τη μέθοδο της συνεχούς δοκιμής (trial and error), αποκάλυψαν σταδιακά τις βασικές αρχές της λειτουργίας του μετασχηματιστή. Αποδοτικοί σχεδιασμοί δεν ανακαλύφθηκαν παρά μετά το 1880,[5] όμως μέσα σε λιγότερο από μια δεκαετία, ο μετασχηματιστής αποδείχτηκε ουσιώδης στην επικράτηση των συστημάτων εναλασσόμενου ρεύματος έναντι αυτών του συνεχούς, θέση την οποία κρατούν μέχρι και σήμερα.[5]

Το πηνίο του Κάλαν, 1836

Ο Ρώσος μηχανικός Πάβελ Γιαμπλότσκοφ εφηύρε το 1876 ένα σύστημα φωτισμού, βασισμένο σε ένα σύνολο από πηνία επαγωγής, όπου τα πρωτεύοντα τυλίγματα ήταν συνδεδεμένα σε πηγή εναλλασσόμενου ρεύματος, ενώ τα δευτερεύοντα μπορούσαν να συνδεθούν σε αρκετά "κεριά Γιαμπλότσκοφ" (είδος ηλεκτρικού λαμπτήρα τόξου). Στην πατέντα ισχυριζόταν ότι το σύστημα μπορούσε να "παρέχει ανεξάρτητα ισχύ σε διάφορους λαμπτήρες, με διαφορετική ισχύ φωτεινότητας, από μία πηγή ηλεκτρικής ισχύος". Προφανώς, το πηνίο επαγωγής σε αυτό το σύστημα λειτουργούσε ως μετασχηματιστής.

Οι Λουσιέν Γκολάρ και Τζον Ντίξον Γκιμπς επέδειξαν πρώτοι το 1882 στο Λονδίνο μια συσκευή με ανοιχτό πυρήνα σιδήρου που αποκαλούσαν "δευτερεύουσα γεννήτρια", ιδέα που πούλησαν στη συνέχεια στην αμερικανική εταιρεία Ουέστινγκχαους.[6] Την ίδια συσκευή επέδειξαν και το 1884 στο Τορίνο, όπου υιοθετήθηκε για ένα ηλεκτρικό σύστημα φωτισμού.

Οι Ούγγροι μηχανικοί Κάρολι Ζιπερνόφσκι, Όττο Μπλάθι και Μίκσα Ντέρι, από την εταιρεία Γκαντζ στην Βουδαπέστη δημιούργησαν το αποδοτικό μοντέλο κλειστού πυρήνα "ZBD" το 1885, βασισμένοι σε ένα σχέδιο των Γκολάρ και Γκιμπς.

Ένας φυσικός της Ουέστινγκχαους, ο Ουίλλιαμ Στάνλεϊ, δημιούργησε την πρώτη εμπορική υλοποίηση μετασχηματιστή το 1885, μετά την αγορά από τον Τζορτζ Ουέστινγκχαους των πατεντών των Γκολάρ και Γκιμπς. Ο πυρήνας ήταν κατασκευασμένος από πλάκες σιδήρου σχήματος "Ε", οι οποίες έμπαιναν η μία μέσα στην άλλη. Αυτό το σχέδιο χρησιμοποιήθηκε για πρώτη φορά στο εμπόριο το 1886.[5] Η αίτηση ευρεσιτεχνίας έκανε για πρώτη φορά αναφορά στη λέξη "μετασχηματιστής".[6] Ο Ρώσος μηχανικός Μικαΐλ Ντόλιβο-Ντομπροβόλσκι ανέπτυξε τον πρώτο τριφασικό μετασχηματιστή το 1889. Το 1891 ο Νίκολα Τέσλα εφηύρε το πηνίο Τέσλα, ένα μετασχηματιστή συντονισμού με πυρήνα αέρα, για την παραγωγή πολύ υψηλών τάσεων σε υψηλές συχνότητες. Μετασχηματιστές ακουστών συχνοτήτων χρησιμοποιήθηκαν για τα πρώτα πειράματα της ανάπτυξης του τηλεφώνου.

Παρότι νέες τεχνολογίες έχουν καταστήσει τους μετασχηματιστές παρωχημένους για ορισμένες ηλεκτρονικές εφαρμογές, μετασχηματιστές χρησιμοποιούνται ακόμα σε πολλές ηλεκτρονικές συσκευές. Οι μετασχηματιστές είναι επίσης βασικοί στην μετάδοση ρευμάτων υψηλής τάσης, τεχνική που κάνει οικονομικά βιώσιμη τη μετάδοση ηλεκτρικής ισχύος σε μεγάλες αποστάσεις.

[Επεξεργασία] Βασικές αρχές

Ο μετασχηματιστής βασίζεται σε δύο αρχές: πρώτον, ότι ένα ηλεκτρικό ρεύμα μπορεί να παράγει ένα μαγνητικό πεδίο (ηλεκτρομαγνητισμός) και, δεύτερον, ότι ένα μεταβαλλόμενο μαγνητικό πεδίο σε ένα τυλιγμένο σύρμα ("τύλιγμα"), επάγει διαφορά δυναμικού στα άκρα του τυλίγματος (ηλεκτρομαγνητική επαγωγή). Μεταβάλλοντας το ρεύμα στο πρωτεύον τύλιγμα, αλλάζει η ένταση του μαγνητικού του πεδίου. Εφόσον το μεταβαλλόμενο μαγνητικό πεδίο εκτείνεται και στο δευτερεύον τύλιγμα, επάγεται διαφορά δυναμικού στα άκρα του δευτερεύοντος.

Ένας ιδανικός μετασχηματιστής υποβιβασμού τάσης με επισημασμένη την μαγνητική ροή στον πυρήνα του

Στο σχήμα φαίνεται ένα απλοποιημένο διάγραμμα μετασχηματιστή. Ηλεκτρικό ρεύμα περνάει μέσα από το πρωτεύον τύλιγμα δημιουργώντας μαγνητικό πεδίο. Τόσο το πρωτεύον όσο και το δευτερεύον τύλιγμα περιελίσσονται γύρω από ένα μαγνητικό πυρήνα πολύ υψηλής μαγνητικής διαπερατότητας, π.χ. από σίδηρο. Με αυτόν τον τρόπο εξασφαλίζεται ότι όσο το δυνατόν περισσότερες γραμμές του μαγνητικού πεδίου που παράγει το πρωτεύον ρεύμα, βρίσκονται εντός του πυρήνα και περνούν τόσο από το πρωτεύον όσο και το δευτερεύον τύλιγμα.

[Επεξεργασία] Νόμος επαγωγής

Το δυναμικό που επάγεται στα άκρα του δευτερεύοντος μπορεί να υπολογιστεί από το νόμο της επαγωγής του Φάραντεϊ, ο οποίος δηλώνει πως:

V_{S} = N_{S} \frac{\mathrm{d}\Phi}{\mathrm{d}t}

όπου VS είναι η στιγμιαία τάση, NS είναι ο αριθμός των περιελίξεων (στροφών) στο δευτερεύον και Φ η μαγνητική ροή σε μία περιέλιξη του τυλίγματος. Αν οι στροφές του τυλίγματος είναι προσανατολισμένες κάθετα προς τις γραμμές του μαγνητικού πεδίου, η ροή είναι το γινόμενο της έντασης B του μαγνητικού πεδίου και της επιφάνειας Α μέσα από την οποία διέρχεται. Η επιφάνεια είναι σταθερή και ίση με την διατομή του πυρήνα του μετασχηματιστή, ενώ το μαγνητικό πεδίο μεταβάλλεται με το χρόνο, ανάλογα με την διέγερση του πρωτεύοντος.

Καθώς σε έναν ιδανικό μετασχηματιστή η ροή που περνά μέσα τόσο από το πρωτεύον όσο και από το δευτερεύον είναι ίδια,[1] η στιγμιαία τάση στα άκρα του πρωτεύοντος τυλίγματος ισούται με:

V_{P} = N_{P} \frac{\mathrm{d}\Phi}{\mathrm{d}t}

Αν διαιρέσουμε τις δύο πιο πάνω σχέσεις κατά μέλη, παίρνουμε την βασική εξίσωση[7] για την ανύψωση ή τον υποβιβασμό της τάσης:

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

[Επεξεργασία] Ιδανική εξίσωση ισχύος

Ο ιδανικός μετασχηματιστής ως στοιχείο κυκλώματος

Αν το δευτερεύον είναι συνδεδεμένο σε φορτίο που επιτρέπει την ροή ρεύματος, τότε έχουμε μετάδοση ισχύος από το πρωτεύον κύκλωμα στο δευτερεύον κύκλωμα. Ιδανικά ο μετασχηματιστής έχει τέλεια αποδοτικότητα, δηλαδή όλη η εισερχόμενη ενέργεια μεταφέρεται από το πρωτεύον, μέσω του μαγνητικού πεδίου, στο δευτερεύον. Αν αυτή η συνθήκη ισχύει, η εισερχόμενη ηλεκτρική ισχύς πρέπει να ισούται με την εξερχόμενη ισχύ.

Pincoming = IPVP = Poutgoing = ISVS

δίνοντας την εξίσωση του ιδανικού μετασχηματιστή

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}} = \frac{I_{P}}{I_{S}}

Αν η τάση αυξηθεί (ανυψωθεί) (VS > VP), τότε το ρεύμα μειώνεται (υποβιβάζεται) (IS < IP) κατά τον ίδιο συντελεστή. Οι μετασχηματιστές έχουν υψηλή αποδοτικότητα, οπότε αυτός ο τύπος αποτελεί ρεαλιστική προσέγγιση.

Η αντίσταση στο ένα κύκλωμα μετασχηματίζεται ανάλογα με το τετράγωνο του λόγου περιελίξεων.[1] Για παράδειγμα, αν μια αντίσταση ZS είναι συνδεδεμένη στα άκρα του δευτερεύοντος, εμφανίζεται στο πρωτεύον να έχει αντίσταση Z_S\!\left(\!\tfrac{N_P}{N_S}\!\right)^2\!\!. Αυτή η σχέση είναι αμφίδρομη, οπότε η αντίσταση ZP του πρωτεύοντος εμφανίζεται στο δευτερεύον ως Z_P\!\left(\!\tfrac{N_S}{N_P}\!\right)^2\!\!.

[Επεξεργασία] Ισοδύναμο κύκλωμα

Δείτε το πιο κάτω διάγραμμα

Οι φυσικοί περιορισμοί των πραγματικών μετασχηματιστών μπορούν να συνοψιστούν σε ένα μοντέλο ισοδύναμου κυκλώματος, το οποίο "χτίζεται" γύρω από το μοντέλο του ιδανικού, χωρίς απώλειες, μετασχηματιστή.[8] Η απώλεια ισχύος στα τυλίγματα εξαρτάται από το ρεύμα και αναπαρίσταται με τις σε σειρά συνδεδεμένες αντιστάσεις RP και RS. Η απώλεια ροής οδηγεί στην πτώση κλάσματος της εφαρμοζόμενης τάσης, πτώση η οποία δεν συνεισφέρει στην αμοιβαία σύζευξη και, κατά συνέπεια, μπορεί να μοντελοποιηθεί με τις επαγωγικές αντιδράσεις XP και XS, συνδεδεμένες σε σειρά με την τέλεια συζευγμένη περιοχή.

Οι απώλειες του πυρήνα οφείλονται κυρίως στην υστέρηση και στις επιπτώσεις των δινορευμάτων στον πυρήνα, ενώ είναι ανάλογα του τετραγώνου της ροής του πυρήνα για λειτουργία σε συγκεκριμένη συχνότητα.[9] Καθώς η ροή στον πυρήνα είναι ανάλογη της εφαρμοζόμενης τάσης, οι απώλειές του μπορούν να εκφραστούν με μια αντίσταση RC τοποθετημένη παράλληλα με τον ιδανικό μετασχηματιστή.

Ένας πυρήνας με πεπερασμένη διαπερατότητα απαιτεί ένα ρεύμα μαγνητισμού IM για να διατηρήσει την αμοιβαία ροή σε αυτόν. Το ρεύμα μαγνητισμού είναι συμφασικό με τη ροή. Φαινόμενα κορεσμού οδηγούν στην μη γραμμικότητα της σχέσης μεταξύ των δύο, για λόγους απλότητας όμως αυτό το φαινόμενο τείνει να αγνοείται στα περισσότερα ισοδύναμα κυκλώματα.[9] Με ένα ημιτονοειδές τροφοδοτικό, η ροή του πυρήνα υστερεί της επαγόμενης ΗΕΔ κατά 90ο και αυτό το φαινόμενο μπορεί να μοντελοποιηθεί ως αντίδραση μαγνητισμού XM παράλληλα με το στοιχείο απώλειας του πυρήνα. Οι RC και XM μερικές φορές αναφέρονται από κοινού ως ο "κλάδος μαγνητισμού" του μοντέλου. Αν το δευτερεύον είναι ανοιχτοκυκλωμένο, το ρεύμα I0 που λαμβάνουμε στον κλάδο μαγνητισμού, αναπαριστά το ρεύμα κενού φορτίου του μετασχηματιστή.[8]

Η δευτερεύουσα σύνθετη αντίσταση RS και XS συχνά ανάγεται στην πλευρά του πρωτεύοντος, αφού πολλαπλασιαστεί με τον τελεστή \left(\!\tfrac{N_P}{N_S}\!\right)^2\!\!.

Ισοδύναμο κύκλωμα μετασχηματιστή, με τις δευτερεύουσες σύνθετες αντιστάσεις ανηγμένες στην πλευρά του πρωτεύοντος

Ισοδύναμο κύκλωμα μετασχηματιστή, με τις δευτερεύουσες σύνθετες αντιστάσεις ανηγμένες στην πλευρά του πρωτεύοντος

Η ανάλυση μπορεί να απλοποιηθεί περαιτέρω μεταφέροντας τον κλάδο μαγνητισμού στα αριστερά της σύνθετης αντίστασης του πρωτεύοντος, μια έμμεση παραδοχή ότι το ρεύμα μαγνητισμού είναι χαμηλό, και με την άθροιση στη συνέχεια των σύνθετων αντιστάσεων του πρωτεύοντος και του ανηγμένου δευτερεύοντος, καταλήγοντας σε μια ισοδύναμη σύνθετη αντίσταση.

Οι παράμετροι του ισοδύναμου κυκλώματος ενός μετασχηματιστή μπορούν να υπολογιστούν από τα αποτελέσματα δύο δοκιμών στον μετασχηματιστή: της δοκιμής ανοιχτού κυκλώματος και της δοκιμής βραχυκυκλώματος.

[Επεξεργασία] Παραπομπές

  1. 1,0 1,1 1,2 Flanagan, William M. (1993-01-01). Handbook of Transformer Design and Applications. McGraw-Hill Professional. ISBN 0070212910, Chap. 1, p. 1–2.
  2. ENERGIE (1999). The scope for energy saving in the EU through the use of energy-efficient electricity distribution transformers (PDF).
  3. Με τον όρο "ηλεκτρικός καταναλωτής" εννοούμε κάθε συσκευή που καταναλώνει ηλεκτρική ενέργεια
  4. Fleming, John Ambrose (1896). The Alternate Current Transformer in Theory and Practice, Vol.2. The Electrician Publishing Co.. p.16-18
  5. 5,0 5,1 5,2 Coltman, J. W. (January 1988), "The Transformer", Scientific American: 86–95
  6. 6,0 6,1 Allan, "Power transformers – the second century", Power Engineering Journal
  7. Winders. Power Transformer Principles and Applications, pp. 20–21.
  8. 8,0 8,1 Daniels, A. R.. Introduction to Electrical Machines, pp. 47–49.
  9. 9,0 9,1 Say, M. G. (February, 1984). Alternating Current Machines, Fifth Edition. Halsted Press. ISBN 0470274514, pp. 142–143.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

No comments: